Skip to main content

Advertisement

Log in

Decentralized Hydrothermal Dispatch via Bilevel Optimization

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper analyzes the problem of dispatching power in a hydrothermal system in a way that gives more freedom to power producers. The dispatch is obtained by solving a bilevel optimization problem, and generation outputs are determined by the interactions of a market coordinator, which receives generation offers, and the system operator, which guarantees a dispatch that is feasible to system constraints. The dispatch is carried out for hydro-dominant system and considers that power producers make quantity offers to the market. Lagrangian duality theory is employed to solve the bilevel problem. The paper analyzes results obtained for small partitions of the Brazilian hydroelectric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida, K., & Conejo, A. (2013). Medium-term power dispatch in predominantly hydro systems: An equilibrium approach. IEEE Transactions on Power Systems, 3(28), 2384–2394.

    Article  Google Scholar 

  • Barquin, J., Centeno, E., & Reneses, J. (2004). Medium-term generation programming in competitive environments: a new optimisation approach for market equilibrium computing. IEE Proceedings - Generation, Transmission and Distribution, 151(1), 119–126.

    Article  Google Scholar 

  • Bernadinelli, L., & Martins, L. (2017) Equilibrium approach to the single solution of longer- and shorter-term hydro-thermal scheduling problems. In 6th international conference on clean electrical power (ICCEP), Santa Margherita Ligure, Italy, pp. 471–478.

  • Bushnell, J. (2003). A mixed complementary model of hydrothermal electricity competition in the western united states. Operations Research, 51(1), 80–93.

    Article  MATH  Google Scholar 

  • Castillo, E., Conejo, A., Pedregal, P., García, R., & Alguacil, N. (2002). Buildigng and solving mathematical programming models in engineering and scicence.

  • Cerisola, S., Latorre, J. M., & Ramos, A. (2012). Stochastic dual dynamic programming applied to nonconvex hydrothermal models. European Journal of Operational Research, 218(3), 687–697.

    Article  MathSciNet  MATH  Google Scholar 

  • Cicconet, F., & Almeida, K. C. (2013). Decentralized dispatch with price consistency in predominantly hydro systems. In 2013 IEEE grenoble conference, pp. 1–6. https://doi.org/10.1109/PTC.2013.6652275

  • de la Torre, S., Contreras, J., & Conejo, A. J. (2004). Finding multiperiod nash equilibria in pool-based electricity markets. IEEE Transactions on Power Systems, 19(1), 643–651.

    Article  Google Scholar 

  • Drud, A. (2012) Conopt tutorial. Retrieved June 30, 2012 from http://www.gams.com/dd/docs/solvers/conopt.pdf

  • Electricity authority, New Zealand. (2012). Retail and wholesale market. http://www.ea.govt.nz

  • Kelman, R., Barroso, L. A. N., & Pereira, M. V. F. (2001). Market power assessment and mitigation in hydrothermal systems. IEEE Transactions on power systems, 16, 354–359.

    Article  Google Scholar 

  • Labadie, J. W. (2004). Optimal operation of multireservoir systems: State-of-the-art review. Journal of Water Resources Planning and Management, 130(2), 93–111.

    Article  Google Scholar 

  • Leyfer, S., & Munson, T. (2007). Solving multi-leader-common-follower game. Technical report, Argone National Laboratory

  • Loschenbrand, M., & Korpas, M. (2018). Multiple nash equilibria in electricity markets with price-making hydrothermal producers. IEEE Transactions on Power Systems, pp. 1–1. https://doi.org/10.1109/TPWRS.2018.2858574

  • Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear porgramming (4th ed.). Berlin: Springer.

    Book  Google Scholar 

  • Martins, L. S. A., Azevedo, A. T., & Soares, S. (2014). Nonlinear medium-term hydro-thermal scheduling with transmission constraints. IEEE Transactions on Power Systems, 29(4), 1623–1633.

    Article  Google Scholar 

  • Molina, J. P., Zolezzi, J. M., Contreras, J., Rudnick, H., & Reveco, M. J. (2011). Nash-Cournot equilibria in hydrothermal electricity markets. IEEE Transactions on Power Systems, 26, 1089–1101.

    Article  Google Scholar 

  • Nord Pool Spot: The nordic electricity exchange and the nordic model for a liberized electricity market. Retrieved September 9, 2012 http://www.nordpoolspot.com/How-does-it-work/ (2012)

  • Operador Nacional do Sistema Elétrico. (2012). Séries históricas de vazões. Retrieved October 10, 2012 from http://www.ons.org.br/operacao/vazoes_naturais.aspx

  • Operador Nacional do Sistema Elétrico. (2017). Carga de demanda. http://www.ons.org.br/historico/carga-propria-de-demanda.aspx

  • Operador Nacional do Sistema Elétrico: Procedimentos de rede, submódulo 7.3: Programação mensal da operação energética. http://www.ons.org.br/procedimentos/index.asp (2017)

  • Pereira, M., & Pinto, L. (1985). Stochastic optimization of a multireservoir hydroelectric system: A decomposition approach. Water Resources Reserch, pp. 779–792.

  • Rosenthal, R. (2012) Gams - a user’s guide. http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf

  • Scott, T., & Read, E. (1996). Modeling hidro reservoir operation in a desregulated electricity market. International Transactions in Operational Research, 3, 243–253.

    Article  Google Scholar 

  • Soares, B., & Almeida, K. (2018) Piecewise linear approximations of the hydro power producer problem. In: XXII Congresso Brasileiro de Automática.

  • Soares, M. P., Street, A., & ao, D. M. V. (2017). On the solution variability reduction of stochastic dual dynamic programming applied to energy planning. European Journal of Operational Research, 258(2), 743–760.

    Article  MathSciNet  MATH  Google Scholar 

  • Soares, S., Lyra, C., & Tavares, H. (1980). Optimal generation scheduling of hydrothermal power systems. IEEE Transactions on Power Apparatus and Systems, 6(3), 1107–1118.

    Article  MATH  Google Scholar 

  • Tesser, M., Pagès, A., & Nabona, N. (2009). An oligopoly model for medium-term power planning in a liberalized electricity market. IEEE Transactions on Power Systems, 24, 67–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Almeida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

see Table 6

Table 6 HS7 System data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, K.C., Cicconet, F. Decentralized Hydrothermal Dispatch via Bilevel Optimization. J Control Autom Electr Syst 30, 557–567 (2019). https://doi.org/10.1007/s40313-019-00471-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00471-0

Keywords

Navigation