Skip to main content
Log in

High-Performance P+Resonant Controller Design for Single-phase Islanded Microgrid

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript


This paper presents the design and implementation of a robust joint (P+Resonant) controller for single-phase islanded microgrid in the presence of different load dynamics. Microgrid system consists of different unknown and uncertain load dynamics. The aid of this proposed controller is to achieve robust performance to track the instantaneous grid reference voltage against these uncertain load dynamics. The fault current tracking performance of the controller has also been discussed. The simulation work is done via MATLAB/SimPower system toolbox. It is observed that the proposed controller has successfully tracked the reference grid voltage with minimum steady-state error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others


  • Araújo, J. R., Silva, E. N. M., & Rodrigues, A. B. (2017). Assessment of the impact of microgrid control strategies in power distribution reliability indices. Journal of Control, Automation and Electrical Systems, 28(2), 271–283.

    Article  Google Scholar 

  • Armin, M., Roy, P. N., Sarkar, S. K., & Das, S. K. (2018). LMI-based robust PID controller design for voltage control of islanded microgrid. Asian Journal of Control, 20(6), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Bairagi, A. K., Habib, A., Rahman, R., Rahman, M., & Jewel, M. (2018). Negative imaginary approached high performance robust resonant controller design for single-phase islanded microgrid and its voltage observation on different load condition. Intelligent Control and Automation, 9, 52–63.

    Article  Google Scholar 

  • Bidram, A., & Davoudi, A. (2012). Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, 3(4), 1963–1976.

    Article  Google Scholar 

  • Dash, P. K., Barik, S. K., & Patnaik, R. K. (2014). Detection and classification of islanding and non-islanding events in distributed generation based on fuzzy decision tree. Journal of Control, Automation and Electrical Systems, 25(6), 699–719.

    Article  Google Scholar 

  • ElMoursi, M., Pandi, V. R., Khandkikar, V., Lee S. H., Lee, J. H., & Lee, S. (2013). Basic design of UAE’s smart microgrid and the simulation analysis using PSCAD. In 2013 IEEE power & energy society general meeting, Vancouver (pp. 1–5).

  • Kumar, B., & Bhongade, S. (2016). Load disturbance rejection based PID controller for frequency regulation of a microgrid. In 2016 Biennial international conference on power and energy systems: Towards sustainable energy (PESTSE), Bangalore (pp. 1–6).

  • Liu, W., Gu, W., Sheng, W., Meng, X., Wu, Z., & Chen, W. (2014). Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints. IEEE Transactions on Sustainable Energy, 5, 446–456.

    Article  Google Scholar 

  • Park, J., & Candelaria, J. (2013). Fault detection and isolation in low-voltage DC-bus microgrid system. IEEE Transactions on Power Delivery, 28(2), 779–787.

    Article  Google Scholar 

  • Parreira, W. A., Avelar, H. J., & Vieira, J. B. (2014). Small-signal analysis of parallel connected voltage source inverter using a frequency and voltage droop control including an additional phase shift. Journal of Control, Automation and Electrical Systems, 25(5), 597–607.

    Article  Google Scholar 

  • Raj, D. C., & Gaonkar, D. N. (2016). Frequency and voltage droop control of parallel inverters in microgrid. In 2016 2nd international conference on control, instrumentation, energy & communication (CIEC), Kolkata (pp. 407–411).

  • Ramezani, M., & Li, S. (2016). Voltage and frequency control of islanded microgrid based on combined direct current vector control and droop control. In 2016 IEEE power & energy society general meeting (PESGM), Boston (pp. 1–5).

  • Vandoorn, T. L. (2010). Voltage control in islanded microgrids by means of a linear-quadratic regulator. In IEEE Benelux young researchers symposium in electrical power engineering (YRS’10), Leuven.

  • Wang, X., Blaabjerg, F., & Chen, Z. (2014). Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid. IEEE Transactions on Industry Applications, 50(1), 452–461.

    Article  Google Scholar 

  • Wang, B., Ujjal, M., Zhang, X., Gooi, H. B., & Ukil, A. (2018). Deadbeat control for hybrid energy storage systems in DC microgrids. IEEE Transactions on Sustainable Energy., PP, 1.

    Google Scholar 

  • Wu, X., & Shen, C. (2017). Distributed optimal control for stability enhancement of microgrids with multiple distributed generators. IEEE Transactions on Power Systems, 32(5), 4045–4059.

    Article  Google Scholar 

  • Zhou, X., Guo, T., & Ma, Y. (2015). An overview on microgrid technology. In 2015 IEEE international conference on mechatronics and automation (ICMA), Beijing (pp. 76–81).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Arnob Kumar Bairagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairagi, A.K., Sheikh, M.R.I., Habib, M.A. et al. High-Performance P+Resonant Controller Design for Single-phase Islanded Microgrid. J Control Autom Electr Syst 30, 589–600 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: