Advertisement

Evaluation of the Output Load Effect on a Piezoelectric Energy Harvester

  • M. A. J. Coelho
  • J. V. Flores
  • V. J. Brusamarello
Article
  • 106 Downloads

Abstract

This paper presents the study of a vibration energy harvesting system using piezoelectric generator coupled to a cantilever beam when subjected to output loads with different electrical characteristics. The proposed analysis is based on the system frequency response under two scenarios at the output of the piezoelectric energy harvester: a purely resistive load and a full-wave rectifier before the load. A prototype capable of varying the amplitude and frequency of the input mechanical stimulus was constructed in order to evaluate the energy harvester. Then system identification techniques were employed to determine how the resonance frequency and output power are affected by the load. Experimental results showed that depending on the load there is significant change on the operating point at which the maximum power transfer occurs.

Keywords

Energy harvesting Frequency response Output load Piezoelectricity 

Notes

Acknowledgements

We would like to thanks CAPES and FAPERGS for the research support - PqG \(2110-2551/13-0\). J.V. Flores was supported by CNPq (Brazil) under grants 43979/2014-6 and 305886/2015-0.

References

  1. Alexander, C. K., & Sadiku, M. N. O. (2013). Fundamentos de Circuitos Elétricos (5th ed., p. 874). Porto Alegre: Bookman.Google Scholar
  2. Arms, S., Townsend, C., Churchill, D., Galbreath, J., & Mundell, S. (2005). Power management for energy harvesting wireless sensors. In SPIE international symposium on smart structures and smart materials (Vol. 1, pp. 1–9).Google Scholar
  3. Bao, B., & Tang, W. (2017). Semi-active vibration control featuring a self-sensing ssdv approach. Measurement, 104, 192–203.CrossRefGoogle Scholar
  4. Beeby, S. P., Tudor, M. J., & White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175.CrossRefGoogle Scholar
  5. Brufau-Penella, J., & Puig-Vidal, M. (2009). Piezoelectric energy harvesting improvement with complex conjugate impedance matching. Journal of Intelligent Material Systems and Structures, 20(5), 597–608.CrossRefGoogle Scholar
  6. Das, K., Zand, P., & Havinga, P. (2017). Industrial wireless monitoring with energy-harvesting devices. IEEE Internet Computing, 21(1), 12–20.CrossRefGoogle Scholar
  7. D’hulst, R., & Driesen, J. (2008). Power processing circuits for vibration-based energy harvesters. In IEEE power electronics specialists conference (PESC 2008) (Vol. 39, pp. 2556–2562). New York: Rhodes.Google Scholar
  8. Du, L., Fang, Z., Yan, J., & Zhao, Z. (2017a). Enabling a wind energy harvester based on ZnO thin film as the building skin. Sensors and Actuators A: Physical, 260, 35–44.CrossRefGoogle Scholar
  9. Du, S., Jia, Y., & Seshia, A. A. (2017b). An efficient inductorless dynamically configured interface circuit for piezoelectric vibration energy harvesting. IEEE Transactions on Power Electronics, 32(5), 3595–3609.CrossRefGoogle Scholar
  10. Guan, M. J., & Liao, W. H. (2007). On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Materials and Structures, 16(2), 498.CrossRefGoogle Scholar
  11. Halim, D., & Moheimani, S. O. R. (2001). Spatial resonant control of flexible structures—Application to a piezoelectric laminate beam. IEEE Transactions on Control Systems Technology, 1(1), 37–53.CrossRefGoogle Scholar
  12. He, X., Teh, K. S., Li, S., Dong, L., & Jiang, S. (2017). Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sensors and Actuators A: Physical, 259, 171–179.CrossRefGoogle Scholar
  13. Henrion, D., Prieur, C., & Tliba, S. (2004). Improving conditioning of polynomial pole placement problems with application to low-order controller design for a flexible beam (Vol. 1, pp. 1–7). LAAS-CNRS Research Report 04163.Google Scholar
  14. Hsieh, Y. T., Fang, C. L., Su, C. F., Tsai, H. H., & Juang, Y. Z. (2016). A hybrid ambient energy harvesting integrated chip (IC) for the internet of things (IoT) and portable applications. In 19th international conference on electrical machines and systems (ICEMS) (pp. 1–4).Google Scholar
  15. Hu, J., Jong, J., & Zhao, C. (2010). Vibration energy harvesting based on integrated piezoelectric components operating in different modes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(2), 386–394.CrossRefGoogle Scholar
  16. Kuang, Y., Ruan, T., Chew, Z. J., & Zhu, M. (2017). Energy harvesting during human walking to power a wireless sensor node. Sensors and Actuators A: Physical, 254, 69–77.CrossRefGoogle Scholar
  17. Liang, J., & Liao, W. H. (2011). Energy flow in piezoelectric energy harvesting systems. Smart Materials and Structures, 20(1), 015,005.MathSciNetCrossRefGoogle Scholar
  18. Liang, J., & Liao, W. H. (2012). Impedance modeling and analysis for piezoelectric energy harvesting systems. IEEE/ASME Transactions on Mechatronics, 17(6), 1145–1157.CrossRefGoogle Scholar
  19. Ljung, L. (1999). System identification: Theory for the user (2nd ed.). Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  20. Luemchamloey, A., & Kuntanapreeda, S. (2014). Active vibration control of flexible beams based on infinite-dimensional Lyapunov stability theory: An experimental study. Journal of Control, Automation and Electrical Systems, 25(6), 649–656.CrossRefGoogle Scholar
  21. Moheimani, S. O. R., Halim, D., & Fleming, A. J. (2003). Spatial control of vibration: Theory and experiments, series on stability, vibration and control of systems (Vol. 10, p. 223). Singapore: World Scientific.zbMATHGoogle Scholar
  22. Moheimani, S. R., & Fleming, A. J. (2006). Piezoelectric transducers for vibration control and damping. Advances in industrial control (1st ed.). London: Springer.zbMATHGoogle Scholar
  23. Naikwad, S., Rajendran, M. K., Sunil, P., & Dutta, A. (2017). A single inductor, single input dual output (sido) piezoelectric energy harvesting system. In 30th international conference on VLSI design and 2017  16th international conference on embedded systems (VLSID) (pp. 95–100).Google Scholar
  24. Pan, F., Xu, Z., Jin, L., Pan, P., & Gao, X. (2017). Designed simulation and experiment of a piezoelectric energy harvesting system based on vortex induced vibration. IEEE Transactions on Industry Applications, 99, 1–1.Google Scholar
  25. Platt, S., Farritor, S., & Haider, H. (2005). On low-frequency electric power generation with PZT ceramics. IEEE/ASME Transactions on Mechatronics, 10(2), 240–252.CrossRefGoogle Scholar
  26. Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics, 19(1), 167–184.MathSciNetCrossRefGoogle Scholar
  27. Priya, S., & Inman, D. J. (2009). Energy harvesting technologies. Berlin: Springer.CrossRefGoogle Scholar
  28. Rao, S. S. (2011). Mechanical vibrations (5th ed., p. 1084). Upper Saddle River: Prentice Hall.Google Scholar
  29. Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499.CrossRefGoogle Scholar
  30. Vullers, R. J. M., van Schaijk, R., Visser, H. J., Penders, J., & Hoof, C. V. (2010). Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine, 2(2), 29–38.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  • M. A. J. Coelho
    • 1
  • J. V. Flores
    • 1
  • V. J. Brusamarello
    • 1
  1. 1.Electrical Engineering Graduate ProgramFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations