Skip to main content
Log in

Friction Compensation in Pneumatic Control Valves Through Feedback Linearization

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Control valves are very important actuators in the process industry. Due to friction in the stem, they present a nonlinear behavior, which can generate errors in the stem position and oscillations in control loops. This paper presents five control algorithms based on feedback linearization technique, to deal with pneumatic control valves affected by high friction in their stems. These control algorithms measure the valve position and manipulate the actuator pressure, acting as a valve positioner. The paper also shows practical results with a control valve operating in a real flow control loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  • Arifin, B. M. S., Munaro, C. J., Choudhury, M. A. A. S., & Shah S. L. (2014). A model free approach for online stiction compensation. In Proceedings of the 19th IFAC World Congress, August 24–29, Cape Town, South Africa, pp. 5957–5962.

  • Bacci, R. C., Scali, C., & Pannocchia, G. (2016). System identification applied to stiction quantification in industrial control loops: A comparative study. Journal of Process Control, 46, 11–23.

    Article  Google Scholar 

  • Canudas de Wit, C., Olsson, H., Åström, K. J., & Lischinsky, P. (1995). A new model for control of systems with friction. IEEE Transactions on Automatic Control, 40(3), 419–425.

    Article  MathSciNet  MATH  Google Scholar 

  • Choudhury, M. A. A. S., Shah, S. L., Thornhill, N. F., & Shook, D. S. (2006). Automatic detection and quantification of stiction in control valves. Control Engineering Practice, 14(12), 1395–1412.

    Article  Google Scholar 

  • Choudhury, M. A. A. S., Thornhill, N. F., & Shah, S. L. (2004). A data-driven model for valve stiction. In Proceedings of the 5th IFAC Symposium on Advanced Control of Chemical Process (ADCHEM), Hong-Kong.

  • Cuadros, M. A. D. S., Munaro, C. J., & Munareto, S. (2012). Improved stiction compensation in pneumatic control valves. Computers & Chemical Engineering, 38, 106–114.

    Article  Google Scholar 

  • Dahlin, E. B. (1968). Designing and tuning digital controllers. Instruments & Control Systems, 41(6), 77–83.

    Google Scholar 

  • Ender, D. (1997). Implementation of deadband reset scheduling for the elimination of stick-slip cycling in control valves. In Process Control Electrical & Information Conference.

  • Garcia, C. (2008). Comparison of friction models applied to a control valve. Control Engineering Practice, 16(10), 1231–1243.

    Article  Google Scholar 

  • Hägglund, T. (2002). A friction compensator for pneumatic control valves. Journal of Process Control, 12, 897–904.

    Article  Google Scholar 

  • Hägglund, T. (2007). Automatic on-line estimation of backlash in control loops. Journal of Process Control, 17, 489–499.

    Article  Google Scholar 

  • Henson, M. A., & Seborg, D. E. (1991). An internal model control strategy for nonlinear systems. American Institute of Chemical Engineers Journal, 37(7), 1065–1081.

    Article  MathSciNet  Google Scholar 

  • Henson, M. A., & Seborg, D. E. (1997). Nonlinear process control. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • Isidori, A. (1989). Nonlinear control systems: An introduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kano, M., Hiroshi, M., Kugemoto, H., & Shimizu, K. (2004). Practical model and detection algorithm for valve stiction. In Proceedings of the 7th IFAC symposium on dynamics and control of process systems (DYCOPS), Cambridge, MA, USA.

  • Karnopp, D. (1985). Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of Dynamic Systems, Measurement and Control, 107(1), 100–103.

    Article  Google Scholar 

  • Kayihan, A., & Doyle, F. J. (2000). Friction compensation for a process control valve. Control Engineering Practice, 8(7), 799–812.

    Article  Google Scholar 

  • Li, C., Choudhury, M. A. A. S., Huang, B., & Qian, F. (2014). Frequency analysis and compensation of valve stiction in cascade control loops. Journal of Process Control, 24, 1747–1760.

    Article  Google Scholar 

  • Mishra, P., Kumar, V., & Rana, K. P. S. (2014). A novel intelligent controller for combating stiction in pneumatic control valves. Control Engineering Practice, 33, 94–104.

    Article  Google Scholar 

  • Mishra, P., Kumar, V., & Rana, K. P. S. (2015). An online tuned novel nonlinear PI controller for stiction compensation in pneumatic control valves. ISA Transactions, 58, 434–445.

    Article  Google Scholar 

  • Mohammad, A., & Huang, B. (2012). Compensation of control valve stiction through controller tuning. Journal of Process Control, 22, 1800–1819.

    Article  Google Scholar 

  • Romano, R. A., & Garcia, C. (2008). Karnopp friction model identification for a real control valve. In Proceedings of the 17th World Congress of IFAC, pp. 14906–14911.

  • Slotine, J. J., & Li, W. (1991). Applied nonlinear control. Upper Saddle River, NJ: Pretince Hall.

    MATH  Google Scholar 

  • Sobczyk, M. R., Gervini, V. I., Perondi, E. A., & Cunha, M. A. B. (2016). A continuous version of the LuGre friction model applied to the adaptive control of a pneumatic servo system. Journal of the Franklin Institute, 353, 3021–3039.

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan, R., & Rengaswamy, R. (2005). Stiction compensation in process control loops: A framework for integrating stiction measure and compensation. Industrial & Engineering Chemistry Research, 24(44), 9164–9174.

    Article  Google Scholar 

  • Srinivasan, R., & Rengaswamy, R. (2008). Approaches for efficient stiction compensation in process control valves. Computers & Chemical Engineering, 32(1–2), 218–229.

    Article  Google Scholar 

  • Wang, T., Xie, L., Tan, F., Su, H. (2015). A new implementation of open-loop two-move compensation method for oscillations caused by control valve stiction. In Proceedings of the 9th International Symposium on Advanced Control of Chemical Processes—ADCHEM, Whistler, British Columbia, Canada, pp. 433–438.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João R. Baeza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeza, J.R., Garcia, C. Friction Compensation in Pneumatic Control Valves Through Feedback Linearization. J Control Autom Electr Syst 29, 303–317 (2018). https://doi.org/10.1007/s40313-018-0382-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-0382-y

Keywords

Navigation