Skip to main content
Log in

Attitude, Angle of Attack and Angle of Sideslip Determination Using Carrier Phase Integer Ambiguity Estimation

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The Global Navigation Satellite System (GNSS) positioning solution may be computed to a cm level of error, if the signal carrier phase is properly considered during the calculations. With such a precision, even attitude angles can be precisely estimated if more than one antennae is available. However, using the carrier phase information depends on solving the carrier phase integer ambiguity problem which is intrinsic to this approach. Since only a fraction of the carrier phase is observed by the GNSS receivers, the solution for the integer ambiguity is usually obtained by means of search algorithms, based on least squares. This contribution investigates the performance of the integer ambiguity solution for the attitude determination problem and also proposes a novel application: angle of attack and angle of sideslip estimation for specific aeronautical application. This novel application benefits aeronautical industry by introducing a new alternative for measuring reliable airdata parameters, namely angle of attack and angle of sideslip, by using a nonsusceptible to icing conditions data. The results presented here are based on the constrained LAMBDA method. Dynamic real data are used for evaluation of the proposed novel application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bar-Itzhack, I. Y. (1977). Navigation computation in terrestrial strapdown inertial navigation systems. IEEE Transactions on Aerospace and Electronic Systems, AES, 13(6), 679–689.

    Article  Google Scholar 

  • Baroni, L., & Kuga, H. K. (2009). Evaluation of two integer ambiguity resolution methods for real time GPS positioning. WSEAS Transactions on Systems, 8(3), 323–333.

    Google Scholar 

  • Baroni, L., & Kuga, H. K. (2012). Analysis of attitude determination methods using GPS carrier phase measurements. Mathematical Problems in Engineering, 8(3), 10.

    MathSciNet  MATH  Google Scholar 

  • Chang, X.-W., & Zhou, T. (2006). MILES MATLAB package for solving mixed integer least squares problems, theory and algorithms. Scientific Computing Laboratory School of Computer Science McGill University, 11(4), 289–294.

    Google Scholar 

  • de F. E. Campos, R. (2011). Algoritmos de navegação inercial com múltiplas taxas de amostragem para fusão INS/GPS/câmera com federação de filtros. Tese de Mestrado em Sistemas e Controle - Instituto Tecnológico de Aeronáutica, São José dos Campos.

  • DO-178C. (2012). Software considerations in airborne systems and equipment certification. Revision C. RTCA.

  • EDD 2015/08/R. (2015). Executive director decision certification specifications and acceptable means of compliance for large aeroplanes—CS-25 Amendment 16. https://www.easa.europa.eu/system/files/dfu/ED Decision 2015-008-R.pdf. Accessed January 25 2018.

  • Etkin, B. (1959). Dynamics of flight. New York: Wiley.

    MATH  Google Scholar 

  • Farrel, J. A., & Barth, M. (1999). The Global Positioning System and Inertial Navigation. New York: McGraw Hill.

    Google Scholar 

  • Flottau, J. (2010). Industry aware of Pitot tube issues since 1995. Aviation Week. http://aviationweek.com/awin/industry-aware-pitot-tube-issues-1995. Accessed January 25 2018.

  • Giorge, G., Gourlay, T. P., Teunissen, P. J. G., Huisman, L., & Klaka, K. (2010). Carrier phase ambiguity resolution for ship attitude determination and dynamic draught. Australia: FIG Congress.

    Google Scholar 

  • Giorge, G., & Teunissen, P. J. G. (2012). GNSS carrier phase-based attitude determination. Recent Advances in Aircraft Technology, InTech, China.

  • Groves, P. D. (2008). Principles of GNSS, inertial, and multisensor integrated navigation systems. London: Artech House.

    MATH  Google Scholar 

  • Hatch, R. (1990). Instantaneous ambiguity resolution. In International symposium on kinematic system in geodesy, surveying, and remote sensing (pp. 299–308), Berlin.

  • Hermerly, E. M., & Schad, V. R. (2004). Sistema de Navegação de Baixo Custo Baseado na Fusão INS/GPS Usando Filtro de Kalman. Gramado, RS: XV Congresso Brasileiro de Automática.

    Google Scholar 

  • Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). GPS theory and practice (5th ed.). Wien: Springer.

    Google Scholar 

  • Jonge, P., & Tiberius, C. (1996). The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Geodetic Computing Centre, LGR-Series, No 12 (p. 173).

  • Kim, D., & Langley, R. B. (2000). GPS ambiguity resolution and validation: Methodologies, trends and issues. In 7th GNSS Workshop—International symposium on GPS/GNSS (p. 9), Seoul, Korea.

  • Leik, A. (1995). GPS satellite surveying (2nd ed.). New York: Wiley.

    Google Scholar 

  • Li, B., & Shen, Y. (2010). Global navigation satellite system ambiguity resolution with constraints from normal equations. Journal of Surveying Engineering, 136(2), 63–71.

    Article  Google Scholar 

  • Liu, Y., Ge, M., Shi, C., Lou, Y., Wickert, J., & Schuh, H. (2016). Improving integer ambiguity resolution for GLONASS precise orbit determination. Journal of Geodesy, 90(8), 12.

    Article  Google Scholar 

  • Lopez, M. (2016). Accidente del Aifrance 447. Aviacion para Todos. http://aviacionparatodos1.blogspot.com.br/2016/06/accidente-del-aifrance-447.html. Accessed January 29 2018.

  • Lu, G. (1995). Development of a GPS multi-antenna system for attitude determination. PhD. Thesis, University of Calgary, Calgary.

  • Mortari, D. (2000). Second estimator of the optimal quaternion. Journal of Guidance, Control, and Dynamics, 23(5), 885–888.

    Article  Google Scholar 

  • Nadarajah, N., Khodabandeh, A., & Teunissen, P. J. G. (2016). Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation. GPS Solut, No 20 (pp. 289–297).

  • NPA 2012-22. (2012). Large aeroplane certification specifications in supercooled large drop, mixed phase, and ice crystal icing conditions—Advisory material. https://www.easa.europa.eu/system/files/dfu/NPA%202012-22.pdf. Accessed January 25 2018.

  • Park, C., & Teunissen, P. J. G. (2009). Integer least squares with quadratic equality constraints and its applications to GNSS attitude determination systems. International Journal of Control, Automation, and Systems, 7(4), 566–576.

    Article  Google Scholar 

  • Quan, Y., Lau, L., Roberts, G. W., & Meng, X. (2016). Measurement signal quality assessment on all available and new signals of multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with real data. The Journal of Navigation, 69, 313–334.

  • Roskam, J. (2001). Airplane flight dynamics and automatic flight controls. USA: DAR Corporation.

    Google Scholar 

  • Savage, P. G. (1998a). Strapdown inertial navigation integration algorithm design part I: Attitude algorithms. Journal of Guidance, Control and Dynamics, 21(1), 19–27.

    Article  MATH  Google Scholar 

  • Savage, P. G. (1998b). Strapdown inertial navigation integration algorithm design part II: Velocity and position algorithms. Journal of Guidance, Control and Dynamics, 21(2), 208–221.

    Article  MATH  Google Scholar 

  • Shuster, M. D., & Oh, S. D. (1981). Three-axis attitude determination from vector observations. Journal of Guidance and Control, 4(1), 70–77.

    Article  MATH  Google Scholar 

  • Skybrary. (2018). Unreliable airspeed indication 2017. http://www.skybrary.aero/index.php/Unreliable_Airspeed_Indications. Accessed January 25.

  • Sultan, R. (2015). Operational impact of §25.1420 and Appendix O. Federal Aviation Administration.

  • Teunissen, P. J. G. (1994). A new method for fast carrier phase ambiguity estimation (pp. 562–573). IEEE Position Location and Navigation System: Las Vegas.

  • Teunissen, P. J. G. (2007). The LAMBDA method for the GNSS compass. Art Satellites, 41, 89–103.

    Google Scholar 

  • Teunissen P. J. G. (2017). Carrier phase integer ambiguity resolution. Springer handbook of global navigation satellite systems (1st ed., pp. 661–685).

  • Teunissen, P. J. G., Giorgi, G., & Buist, P. J. (2011). Testing of a new single-frequency GNSS carrier phase attitude determination method: Land, ship and aircraft experiments. GPS Solutions, 15, 15–28.

    Article  Google Scholar 

  • Titterton, D. H., & Weston, J. L. (1997). Strapdown inertial navigation technology. London: Peter Perigrinus Ltd.

    Google Scholar 

  • Verhagen, S. (2005). The GNSS integer ambiguities estimation and validation. Delft Institute of Earth Observation and Space Systems, Delft University of Technology phD thesis.

  • Verhagen, S., & Teunissen, P. J. G. (2006). New global navigation satellite system ambiguity resolution method compared to existing approaches. Journal of Guidance, Control, and Dynamics, 29(4), 981–991.

    Article  Google Scholar 

  • Wang, B., Miao, L., Wang, S., & Shen, J. (2009). A constrained LAMBDA method for GPS attitude determination. GPS Solutions, 13, 97–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. de F. E. Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de F. E. Campos, R., Hemerly, E.M. Attitude, Angle of Attack and Angle of Sideslip Determination Using Carrier Phase Integer Ambiguity Estimation. J Control Autom Electr Syst 29, 460–469 (2018). https://doi.org/10.1007/s40313-018-0380-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-0380-0

Keywords

Navigation