Abstract
The stabilization of Takagi–Sugeno systems is solved here for the two-dimensional polynomial discrete case, by using the sum-of-squares approach. First, we provide a stabilization condition formulated in terms of polynomial multiple Lyapunov functions. Then, a non-quadratic stabilization condition is developed by applying relaxed stabilization technique. Both conditions can be used for design, by solving them using numerical tools such as SOSTOOLS. A numerical example illustrates the effectiveness of the results.
This is a preview of subscription content, access via your institution.




References
Benzaouia, A., Hmamed, A., & Tadeo, F. (2016). Two-dimensional systems. Berlin: Springer.
Boukili, B., Hmamed, A., & Benzaouia, A. (2015). \(H_{\infty }\) state control for 2D fuzzy FM systems with stochastic perturbation. Circuits, Systems, and Signal Processing, 34(3), 779–796.
Boukili, B., Hmamed, A., Benzaouia, A., & El Hajjaji, A. (2014). \(H_{\infty }\) filtering of two-dimensional T–S fuzzy systems. Circuits, Systems, and Signal Processing, 33(6), 1737–1761.
Boukili, B., Hmamed, A., & Tadeo, F. (2016). Robust \(H_{\infty }\) filtering for 2-D discrete Roesser systems. Journal of Control, Automation and Electrical Systems, 27(5), 497–505.
Chen, J., Xu, S., Zhang, B., Chu, Y., & Zou, Y. (2016). New relaxed stability and stabilization conditions for continuous-time T–S fuzzy models. Information Sciences, 329, 447–460.
Dang, Q. V., Vermeiren, L., Dequidt, A., & Dambrine, M. (2017). Robust stabilizing controller design for Takagi–Sugeno fuzzy descriptor systems under state constraints and actuator saturation. Fuzzy Sets and Systems, 329, 77–90.
de Oliveira, M. C., Bernussou, J., & Geromel, J. C. (1999). A new discrete-time robust stability condition. Systems and Control Letters, 37(4), 261–265.
Ding, D., Li, X., Xie, X., & Liu, D. (2011). Relaxed stabilization conditions for discrete-time 2-D TS fuzzy systems. In Chinese control and decision conference (CCDC) (pp. 3459–3464). IEEE.
Du, C., & Xie, L. (2002). \(H_{\infty }\) control and filtering of two-dimensional systems (Vol. 278). Berlin: Springer.
El-Kasri, C., Hmamed, A., Tissir, E. H., & Tadeo, F. (2013). Robust \(H_{\infty }\) filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidimensional Systems and Signal Processing, 24(4), 685–706.
Fang, C. H., Liu, Y. S., Kau, S. W., Hong, L., & Lee, C. H. (2006). A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(3), 386–397.
Feng, G. (2004). Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 12(1), 22–28.
Gao, J., & Wang, W. (2014). \(H_{\infty }\) control For 2-D fuzzy FM II system with actuator saturation. In Proceedings of the 33rd Chinese control conference (CCC) (pp. 4435–4439).
Guelton, K., Manamanni, N., Koumba-Emianiwe, D. L., & Chinh, C. D. (2011). SOS stability conditions for nonlinear systems based on a polynomial fuzzy Lyapunov function. IFAC Proceedings Volumes, 44(1), 12777–12782.
Hmamed, A., Chaibi, R., & Tadeo, F. (2016). Stabilization of discrete-time 2-D TS Fuzzy system via a sum of squares (SOS) approach. In 5th IEEE international conference on systems and control (ICSC) (pp. 109–114).
Hmamed, A., Mesquine, F., Tadeo, F., Benhayoun, M., & Benzaouia, A. (2010). Stabilization of 2D saturated systems by state feedback control. Multidimensional Systems and Signal Processing, 21(3), 277–292.
Johansson, M., Rantzer, A., & Arzen, K. E. (1999). Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(6), 713–722.
Li, Z., Park, J. B., & Joo, Y. H. (2001). Chaotifying continuous-time TS fuzzy systems via discretization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(10), 1237–1243.
Marszalek, W. (1984). Two-dimensional state-space discrete models for hyperbolic partial differential equations. Applied Mathematical Modelling, 8, 11–14.
Mozelli, L. A., Palhares, R. M., Souza, F. O., & Mendes, E. M. (2009). Reducing conservativeness in recent stability conditions of TS fuzzy systems. Automatica, 45(6), 1580–1583.
Naamane, K., Chaibi, R., Tissir, E. H., & Hmamed, A. (2017). Stabilization of discrete-time TS fuzzy systems with saturating actuators. In International conference on advanced technologies for signal and image processing (ATSIP) (pp. 1–5). IEEE.
Owens, D. H., Amann, N., Rogers, E., & French, M. (2000). Analysis of linear iterative learning control schemes—A 2D systems/repetitive processes approach. Multidimensional Systems and Signal Processing, 11(1), 125–177.
Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., & Parrilo, P. A. (2013). SOSTOOLS: Sum of squares optimization toolbox for MATLAB version 3.00. Pasadena: California Institute of Technology.
Parrilo, P. A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization (Doctoral dissertation, California Institute of Technology).
Prajna, S., Papachristodoulou, A., Seiler, P., & Parrilo, P. A. (2004). SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Users guide, version 2.00. Pasadena: California Institute of Technology.
Rogers, E., & Owens, D. H. (1992). Stability analysis for linear repetitive processes. Berlin: Springer.
Sala, A., & Arino, C. (2007). Relaxed stability and performance conditions for Takagi–Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(3), 727–732.
Shaker, H. R., & Shaker, F. (2014). Lyapunov stability for continuous-time multidimensional nonlinear systems. Nonlinear Dynamics, 75(4), 717–724.
Siala, F., Gassara, H., Chaabane, M., & El Hajjaji, A. (2013). Stability analysis of polynomial fuzzy systems with time-delay via sum of squares (SOS) approach. In Proceedings of 14th international conference on sciences and techniques of automatic control and computer engineering (STA) (pp. 197–200).
Silva, L. F., Leite, V. J., Castelan, E. B., & Klug, M. (2014). Local stabilization of time-delay nonlinear discrete-time systems using Takagi-Sugeno models and convex optimization. Mathematical Problems in Engineering, 2014, 587510. https://doi.org/10.1155/2014/587510.
Sulikowski, B., Galkowski, K., Rogers, E., & Owens, D. H. (2004). Output feedback control of discrete linear repetitive processes. Automatica, 40(12), 2167–2173.
Sulikowski, B., Galkowski, K., Rogers, E., & Owens, D. H. (2006). PI control of discrete linear repetitive processes. Automatica, 42(5), 877–880.
Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1, 116–132.
Tanaka, K., Ohtake, H., & Wang, H. O. (2008). An SOS-based stable control of polynomial discrete fuzzy systems. In IEEE American control conference (pp. 4875–4880).
Tanaka, K., Yoshida, H., Ohtake, H., & Wang, H. O. (2007). A sum of squares approach to stability analysis of polynomial fuzzy systems. In American control conference, ACC’07 (pp. 4071–4076). IEEE.
Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 14–23.
Xiang-Peng, X., & Zhang, H. G. (2010a). Stabilization of discrete-time 2-D TS fuzzy systems based on new relaxed conditions. Acta Automatica Sinica, 36(2), 267–273.
Xiang-Peng, X. I. E., & Zhang, H. G. (2010b). Convergent stabilization conditions of discrete-time 2-D TS fuzzy systems via improved homogeneous polynomial techniques. Acta Automatica Sinica, 36(9), 1305–1311.
Xiaodong, L., & Qingling, Z. (2003). New approaches to \(H_{\infty }\) controller designs based on fuzzy observers for TS fuzzy systems via LMI. Automatica, 39(9), 1571–1582.
Xie, X. P., Zhang, Z. W., & Hu, S. L. (2015). Control synthesis of roesser type discrete-time 2-D T–S fuzzy systems via a multi-instant fuzzy state-feedback control scheme. Neurocomputing, 151, 1384–1391.
Yang, H., Xia, Y., Qiu, J., & Zhang, J. (2010). Filtering for a class of discrete-time systems with time-delays via delta operator approach. International Journal of Systems Science, 41(4), 423–433.
Acknowledgements
Prof. Fernando Tadeo is funded by Conserjería de Educación, Junta de Castilla y Leon with European Regional Development Funds (Grant No. CLU 2017-09 and UIC 233), and by Secretaría de Estado de Investigación, Desarrollo e Innovación (Grant No. DPI2014-54530-R).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chaibi, R., Hmamed, A., Tissir, E.H. et al. Control of Discrete 2-D Takagi–Sugeno Systems via a Sum-of-Squares Approach. J Control Autom Electr Syst 30, 137–147 (2019). https://doi.org/10.1007/s40313-018-00433-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40313-018-00433-y
Keywords
- Discrete 2-D systems
- Sum-of-Squares (SOS)
- Stabilization
- Takagi–Sugeno systems