Skip to main content
Log in

A Novel Approach for Stall Prevention and Rotation Speed Limiting in a Min–Max Controller Structure

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach for the implementation of limit controllers used for stall prevention and rotation speed limitation of a single-spool jet engine. In this approach, the protection requirements regarding the rotation speed are achieved through the use of a filter applied to the reference that will be sent to the power management controller of a Min–Max structure controller. The main controller variable is the turbine’s core rotation speed. The filter chooses the most appropriate reference value aiming at respecting the engine established limits, such as the stall margin and the maximum rotation speed, during transient and steady-state behaviors. The Min–Max compensators structure chosen for the implementation of the controllers is proportional–integral with Back Calculation as the anti-windup technique. Simulation model of a GE-J85-13 single-spool jet engine has been used to test the new approach and compare it to the more common Min–Max structure, where each controller is implemented individually. The simulation contemplates the case where a step function is applied to the power management controller, where the final value is the maximum allowed rotation speed value, at sea-level, static and standard-day temperature conditions. The simulation is repeated for different values of Back Calculation gains using both Min–Max structures, and the behavior of the GE-J85-13 engine is evaluated in each case for comparison proposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AS\((N_{c})\) :

Acceleration schedule vector

AS\(_{N_{c}}^{\mathrm{Vec}}\) :

Acceleration schedule vector containing the maximum allowed variations for given values of \(N_{c}\)

e :

Process error

\(e_{\mathrm{I}}\) :

Integrator error

EPR:

Engine pressure ratio

\(e_\mathrm{ss}\) :

Steady value of PI compensator error

\(F_\mathrm{n}\) :

Net thrust

\(\mathrm{FR}_{\mathrm{N}}\) :

Rotation speed filtered reference

I :

Moment of inertia of the engine’s rotating set

\(K_{\mathrm{b}}\) :

Back Calculation constant

\(K_{\mathrm{bN}}\) :

Back Calculation constant used on a rotation speed controller

\(K_{\mathrm{bT}}\) :

Back Calculation constant used on a temperature controller

\(K_{\mathrm{i}}\) :

Integrator term constant of a PI compensator

\(K_{\mathrm{p}}\) :

Proportional term constant of a PI compensator

N :

Shaft mechanical rotation speed

\(N_{\mathrm{c}}\) :

Shaft corrected rotation speed

\(N_{\mathrm{D}}\) :

Design point rotation speed

\(N_{\mathrm{max}}\) :

Maximum allowed mechanical rotation speed

\(N_{{ c}}^{\mathrm{Vec}}\) :

Vector containing \(N_{{c}}\) values and used in acceleration schedule

PI:

Proportional–integral compensator

\(P_{\mathrm{s}3}\) :

Combustion chamber static pressure

\(P_{\mathrm{t}2}\) :

Compressor inlet total pressure

\(P_{\mathrm{t}5}\) :

Turbine inlet total pressure

\(\mathrm{PR}\) :

Compressor pressure ratio

\(\mathrm{PR}_{\mathrm{stall}}\) :

Compressor pressure ratio for stall occurrence at a given \(N_{c}\)

\(\mathrm{Ref}_{\mathrm{N}}\) :

Rotation speed desired reference

\(\mathrm{RU}\) :

Ratio unit parameter

\(\mathrm{RU}_{\mathrm{min}}\) :

Minimum value allowed for RU parameter

\(\mathrm{SM}\) :

Stall margin

\({t}_{\mathrm{s}}\) :

Settling time

\(T_{\mathrm{s}}\) :

Sample Period

\(T_{\mathrm{t}2}\) :

Compressor inlet total temperature

\(T_{\mathrm{t}4}\) :

Turbine inlet temperature

\(T_{\mathrm{t4max}}\) :

Maximum allowed TIT

\(T_{\mathrm{t}5}\) :

Turbine exhaust temperature

\(T_{\mathrm{std}}\) :

Standard-day temperature

u :

Actuation signal calculated by PI compensator

\(u_{0a}\) :

Initial steady value of actuation signal calculated by acceleration limit controller

\(u_{0T_{\mathrm{t}4}}\) :

Initial steady value of actuation signal calculated by \(T_{\mathrm{t}4}\) limit controller;

\(u_{0N}\) :

Initial steady value of actuation signal calculated by N limit controller

\(u_{0\mathrm{pm}}\) :

Initial steady value of actuation signal calculated by power management controller

\(u_{0\mathrm{r}}\) :

Initial steady value of real actuation signal

\(u_{\mathrm{min}}\) :

Minimum allowed actuation signal

\(u_{\mathrm{max}}\) :

Maximum allowed actuation signal

\(u_{\mathrm{ss}}\) :

Steady value of actuation signal calculated by PI compensator

\(u_{r}\) :

Actual control signal sent to engine’s fuel pump

\(u_{\mathrm{rss}}\) :

Real actuation signal steady value

\(W_{\mathrm{c}}\) :

Power demanded by the jet engine’s compressor

\(w_{\mathrm{f}}\) :

Fuel mass flow

\(W_{\mathrm{t}}\) :

Power delivered by the jet engine’s turbine

References

  • Bobula, G. A., & Burkardt, L. A. (1979). Effects of the steady-state pressure distortion on the stall-margin of a J85-21 turbojet engine. Technical Memorandum NASA TM-79123, NASA, NASA Lewis Research Center, Cleveland, OH 44135, USA. https://ntrs.nasa.gov/?R=19790015797. Accessed 12 Nov 2017.

  • Chappman, J., et al. (2014). Toolbox for the modeling and analysis of thermodynamic systems (T-MATS) user’s guide. Technical Memorandum NASA/TM-2014-216638, NASA, NASA Glenn Research Center, Cleveland, OH 44135, USA. https://ntrs.nasa.gov/search.jsp?R=20140012486. Accessed 27 Apr 2016.

  • Chapman, J. W., et al. (2016). Practical techniques for modeling gas turbine engine performance. In 52nd AIAA/SAE/ASEE joint propulsion conference, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2016-4527.

  • Chapman, J. W., & Litt, J. S. (2017). Control design for an advanced geared turbofan engine. In 53rd AIAA/SAE/ASEE joint propulsion conference, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2017-4820.

  • Csank, J., et al. (2010). Control design for a generic aircraft engine. In 46th AIAA/SAE/ASEE joint propulsion conference, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-6629.

  • Hodel, A. S., & Hall, C. E. (2001). Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 48(2), 442–451.

    Article  Google Scholar 

  • Imani, A., & Montazeri-Gh, M. (2017). Improvement of min–max limit protection in aircraft engine control: An lMI approach. Aerospace Science and Technology, 68, 214–222.

    Article  Google Scholar 

  • Jaw, L., & Mattingly, J. (2009). Aircraft engine controls: Design, system analysis and health monitoring. Chap 5–6 (pp. 119–170). Reston: American Institute of Aeronautics and Astronautics.

    Book  Google Scholar 

  • Johansson, M. (2003). Piecewise linear control systems (pp. 57–61). Berlin: Springer.

    Book  Google Scholar 

  • Kopasakis, G. (2010). Volume dynamics propulsion system modeling for supersonics vehicle research. ASME Journal of Turbomachinery, 132(4), 041003–041003-8. https://doi.org/10.1115/1.3192148.

    Article  Google Scholar 

  • Mehalic, C. M., & Lottig, R. A. (1974). Steady-state inlet temperature distortion effects on the stall limits of a J85-GE-13 turbojet engine. Technical Memorandum NASA TMX-2990, NASA Lewis Research Center, Cleveland, OH 44135, USA. https://ntrs.nasa.gov/search.jsp?R=19740009394. Accessed 12 Nov 2017.

  • Richter, H. (2012a). Advanced control of turbofan engines, chap 1 (pp. 1–4). New York: Springer.

    Book  Google Scholar 

  • Richter, H. (2012b). Multiple sliding modes with override logic: Limit management in aircraft engine controls. Journal of Guidance, Control and Dynamics, 35(4), 1132–1142.

    Article  Google Scholar 

  • Visioli, A. (2003). Modified anti-windup scheme for PID controllers. IEEE Proceedings: Control Theory and Applications, 150(1), 49–54.

    Google Scholar 

  • Yarlagadda, S. (2010). Performance analysis of J85 turbojet engine matching thrust with reduced inlet pressure to the compressor. Master of science degree dissertation, The University of Toledo, Toledo, Spain.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Hadade Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neto, A.H., Yoneyama, T. A Novel Approach for Stall Prevention and Rotation Speed Limiting in a Min–Max Controller Structure. J Control Autom Electr Syst 30, 27–40 (2019). https://doi.org/10.1007/s40313-018-00424-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-00424-z

Keywords

Navigation