Skip to main content
Log in

A Dynamic-State Feedback Approach Employing a New State-Space Description for the Fast Wavelet Transform with Multiple Decomposition Levels

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This research paper proposes a wavelet-based dynamic-state feedback control strategy in the discrete time domain. In this proposal, the state feedback employs a state-space description for the fast wavelet transform, which is also developed in this article. The feedback gains are obtained through a linear quadratic regulator formulation, with cost weights adjusted according to suitable performance metrics. This proposal brings forward efficient results, as well as more robust systems to external perturbations and sensor noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The mentioned values should be avoided because they have null sine or cosine values, which would correspond to zero-valued elements in the controllability and observability matrices. Therefore, the resulting matrices would not have full rank.

References

  • Akansu, A. N., & Haddad, R. A. (2001). Multiresolution signal decomposition: Transforms, subbands, and wavelets. San Diego: Academic Press.

    MATH  Google Scholar 

  • Bunse-Gerstner, A., Kubaliska, D., Vossen, G., & Wilczek, D. (2010). \(h_2\)-norm optimal model reduction for large scale discrete dynamical MIMO systems. Journal of Computational and Applied Mathematics, 233(5), 1202–1216.

    Article  MathSciNet  MATH  Google Scholar 

  • Colombo Junior, J. R., Afonso, R. J. M., Galvão, R. K. H., & Assunção, E. (2016). Robust model predictive control of a benchmark electromechanical system. Journal of Control, Automation and Electrical Systems, 27(2), 119–131.

    Article  Google Scholar 

  • Fernando, W. U. N., & Kumarawadu, S. (2015). Discrete-time neuroadaptive control using dynamic state feedback with application to vehicle motion control for intelligent vehicle highway systems. IET Control Theory and Applications, 4(8), 1465–1477.

    Article  Google Scholar 

  • Franklin, G. F., Powell, J. D., & Workman, M. (1998). Digital control of dynamic systems. Menlo Park: Addison Wesley Longman.

    MATH  Google Scholar 

  • Holmberg, U., Fu, M., & Zhang, C. (2001). Comments on “A revisit to the gain and phase margins of linear quadratic regulators” [with reply]’. IEEE Transactions on Automatic Control, 46(9), 1508–1509.

    Article  MathSciNet  MATH  Google Scholar 

  • Laub, A. J., Heath, M. T., Paige, C. C., & Ward, R. C. (1987). Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Transactions on Automatic Control, 32(2), 115–122.

    Article  MATH  Google Scholar 

  • Lewis, F. L. (1986). Optimal control. New York: John Wiley & Sons.

    Google Scholar 

  • Liu, H., Lu, G., & Zhong, Y. (2013). Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Transactions on Industrial Electronics, 60(10), 4627–4636.

    Article  Google Scholar 

  • Lublin, L., & Athans, M. (1996). Linear quadratic regulator control. In W. S. Levine (Ed.), The control handbook (1st ed., pp. 635–650). Boca Raton: CRC Press.

    Google Scholar 

  • Maccari, L. A., Santini, C. L. A., Oliveira, R. C. L. F., & Montagner, V. F. (2014). Design and experimental implementation of a robust DLQR for three-phase grid-connected converters. In: IEEE/IAS international conference on industry applications (INDUSCON) (2014), Juiz de Fora, Brazil (pp. 1–6).

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization. New York: Springer.

  • Paiva, H. M. (2005). Wavelet-packet identification of dynamic systems in frequency subbands. Ph.D. thesis, Instituto tecnológico de aeronáutica—ITA, São José dos Campos, SP, Brazil. Available on: http://www.bdita.bibl.ita.br/tesesdigitais/lista_resumo.php?num_tese=000540721.

  • Paiva, H. M., & Galvão, R. K. H. (2012). Optimized orthonormal wavelet filters with improved frequency separation. Digital Signal Processing, 22(4), 622–627.

    Article  MathSciNet  Google Scholar 

  • Paiva, H. M., Martins, M. N., Galvão, R. K. H., & Paiva, J. (2009). On the space of orthonormal wavelets: additional constraints to ensure two vanishing moments. IEEE Signal Processing Letters, 16(2), 101–104.

    Article  Google Scholar 

  • Pradhan, J. K., & Ghosh, A. (2015). Multi-input and multi-output proportional-integral-derivative controller design via linear quadratic regulator-linear matrix inequality approach. IET Control Theory and Applications, 9(14), 2140–2145.

    Article  MathSciNet  Google Scholar 

  • Schmitendorf, W. E., & Stalford, H. L. (1997). Improving stability margins via dynamic-state feedback for systems with constant uncertainty. IEEE Transactions on Automatic Control, 42(8), 1161–1163.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherlock, B. G., & Monro, D. M. (1998). On the space of orthonormal wavelets. IEEE Transactions on Signal Processing, 46(6), 1716–1720.

    Article  MathSciNet  MATH  Google Scholar 

  • Ulsoy, A. G. (2013). Improving stability margins via time delay control. In ASME 2013 international design engineering technical conferences and computers and information in engineering conference, Oregon, Portland (pp. 1–10).

  • Ulsoy, A. G. (2015). Time-delayed vibration control of two degree-of-freedom mechanical system for improved stability margins. In 12th IFAC workshop on time delay systems TDS, Michigan, USA : Ann Arbor, (pp. 1–6).

  • Uzinski, J. C., Paiva, H. M., Duarte, M. A. Q., Galvão, R. K. H., & Villarreal, F. (2015). A state-space description for perfect-reconstruction wavelet FIR filter banks with special orthonormal basis functions. ournal of Computational and Applied Mathematics, 290, 290–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaidyanathan, P. P. (1993). Multirate systems and filter banks. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Verdea, C., Rojas, J. L. A., & Fuerte-Esquivel, C. R. (2013). Improving stability margin in electric power systems by linear quadratic regulator and disturbance model. Electric Power Components and Systems, 41(14), 1415–1431.

    Article  Google Scholar 

  • Vetterli, M., & Kovačevi, J. (1995). Wavelets and subband coding. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Zhang, C., & Fu, M. (1996). A revisit to the gain and phase margins of linear quadratic regulators. IEEE Transactions on automatic control, 41(10), 1527–1530.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, R., Zhixing, C., Ping, L., & Furong, G. (2014). Design and implementation of an improved linear quadratic regulation control for oxygen content in a coke furnace. IET Control Theory and Applications, 8(14), 1303–1311.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Brazilian agencies CAPES, CNPq (research fellowships and Ph.D. Grant 160545/2013-7) and FAPESP (Grant 2011/17610-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Uzinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzinski, J.C., Paiva, H.M., Galvão, R.K.H. et al. A Dynamic-State Feedback Approach Employing a New State-Space Description for the Fast Wavelet Transform with Multiple Decomposition Levels. J Control Autom Electr Syst 28, 303–313 (2017). https://doi.org/10.1007/s40313-017-0312-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0312-4

Keywords

Navigation