Skip to main content
Log in

Constrained Model Predictive Control of Interval Type-2 T–S Fuzzy Systems with Markovian Packet Loss

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this work, we develop the constrained model predictive control for nonlinear networked control systems in the presence of parameter uncertainties and random packet loss over the communication link. The interval type-2 (IT2) Takagi–Sugeno fuzzy model is introduced to represent the nonlinear plant because of its intrinsic capability of dealing with high levels of uncertainty. Meanwhile, a time homogenous Markov process with know transition probabilities is utilized to model the data transmission status in the controller to actuator link. An IT2 fuzzy predictive controller is designed by minimizing an upper bound on the expected quadratic performance objective function over the infinite horizon at each sampling time such that the resulting closed-loop IT2 fuzzy system is asymptotically mean-square stable. Stochastic expectation invariant set guarantees the feasibility and stochastic stability of the provided algorithm. Simulation example is provided to illustrate the effectiveness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baillieul, J., & Antsaklis, P. J. (2007). Control and communication challenges in networked real-time systems, In: Processdings of IEEE, vol. 95(1), pp. 9–28, Jan (2007).

  • Camacho, E. F., & Bordons, C. (2004). Model predictive control. NewYork: Springer.

    MATH  Google Scholar 

  • Figueredo, L. F. C., Ishihara, J. Y., Borges, G. A., & Bauchspiess, A. (2013). Delay-dependent robust stability analysis for time-delay T–S fuzzy systems with nonlinear local models. Journal of Control, Automation and Electrical Systems, 24, 11–21.

    Article  Google Scholar 

  • Fu, M. Y., & Souza, C. E. (2009). State estimation for linear discrete-time systems using quantized measurements. Automatica, 45(12), 2937–2945.

    Article  MathSciNet  MATH  Google Scholar 

  • Han, H. X., Zhang, X. H., & Zhang, W. D. (2016). Robust distributed model predictive control under actuator saturations and packet dropouts with time-varying probabilities. IET Control Theory Appliactions, 10(5), 534–544.

    Article  MathSciNet  Google Scholar 

  • Ishido, Y., Quevedo, D. E., & Takaba, K. (2010). Stability analysis of networked control systems subjected to packet-dropouts and finite level quantization. IFAC Proceedings Volumes, 43(19), 43–48.

    Article  MATH  Google Scholar 

  • Klug, M., Castelan, E. B., Leite, V. J. S., & Silva, L. F. P. (2015). Fuzzy dynamic output feedback control through nonlinear Takagi–Sugeno models. Fuzzy Sets and Systems, 263, 92–111.

    Article  MathSciNet  Google Scholar 

  • Lam, H. K. L., & Seneviratne, D. (2008). Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Transactions on Systems, Man and Cybernetics, Part B, 38(3), 617–628.

    Article  Google Scholar 

  • Lin, H., & Antsaklis, P. J. (2005). Stability and persistent disturbance attenuation properties for a class of networked control systems:Switch system approach. International Journal of Control, 78(18), 1447–1458.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X. Y., & Sun, S. L. (2012). Robust \(H_{\infty }\) control for networked systems with random packet dropouts and time delays. Procedia Engineering, 29, 4192–4197.

    Article  Google Scholar 

  • Liu, G. P., Xia, Y. Q., Rees, D., & Hu, W. S. (2007). Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Transaction Systems, Man and Cybernetics, Part C, 37(2), 173–184.

    Article  Google Scholar 

  • Li, H. Y., Wu, C. W., Shi, P., & Gao, Y. B. (2015). Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Transactions on Cybernetics, 45(11), 2378–2389.

    Article  Google Scholar 

  • Lu, J. B., Li, D. W., & Xi, Y. G. (2013). Constrained model predictive control synthesis for uncertain discrete-time markovian jump linear systems. IET Control Theory Appliactions, 7(5), 707–719.

    Article  MathSciNet  Google Scholar 

  • Lu, Q., Shi, P., Lam, H. K., & Zhao, Y. X. (2015). Interval type-2 fuzzy model predictive control of nonlinear networked control systems. IEEE Transactions on Fuzzy systems, 23(3), 2317–2328.

    Article  Google Scholar 

  • Martins, E. C., & Jota, F. G. (2010). Design of networked control systems with explicit compensation for time-delay variations. IEEE Transaction Systems, Man and Cybernetics, Part C, 40(3), 308–318.

    Article  Google Scholar 

  • Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE Transactions Fuzzy Systems, 14(6), 808–821.

    Article  Google Scholar 

  • Moraes, V. M., Castelan, E. B., & Moreno, U. F. (2013). Full-order dynamic output-feedback compensator for time-stamped networked control systems. Journal of Control, Automation and Electrical Systems, 24, 22–32.

    Article  Google Scholar 

  • Niu, Y. G., Jia, T. G., Wang, X. Y., & Yang, F. W. (2009). Output-feedback control design for NCSs subject to quantization and dropout. Information Sciences, 179(21), 3804–3813.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, C., Yue, D., Tian, E. G., & Gu, Z. (2009). A delay distribution based stability analysis and synthesis approach for networked control systems. Journal of the Franklin Institute, 346(4), 349–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Pin, G., & Parisini, T. (2011). Networked predictive control of uncertain constrained nonlinear systems: Recursive feasibility and input-to-state stability analysis. IEEE Transactions on Automatica Control, 56(1), 72–87.

    Article  MathSciNet  Google Scholar 

  • Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 11(7), 733–764.

    Article  Google Scholar 

  • Quevedoa, D. E., & Nešić, D. (2012). Robust stability of packetized predictive control of nonlinear systems with disturbances and markovian packet losses. Automatica, 48(8), 1803–1811.

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, T., Su, H. Y., & Chu, J. (2013). An improved model predictive control for uncertain systems with input saturation. Journal of the Franklin Institute, 350(9), 2757–2768.

    Article  MathSciNet  MATH  Google Scholar 

  • Silva, L. F. P., Leite, V. J. S., Castelan, E. B., & Klug, M. (2014). Local stabilization of time-delay nonlinear discrete-time systems using Takagi-Sugeno models and convex optimization. Mathematical Problems in Engineering, 26(3), 191–200.

    MathSciNet  Google Scholar 

  • Souza, C. E. (2006). Robust stability and stabilization of uncertain discrete-time markovian jump linear systems. IEEE Transactions on Auotmatica Control, 51(5), 836–841.

    Article  MathSciNet  Google Scholar 

  • Tian, G. S., Xia, F., & Tian, Y. C. (2012). Predictive compensation for variable network delays and packet losses in networked control systems. Computers Chemical Engineering, 39(6), 152–162.

    Article  Google Scholar 

  • Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2013). LMI relaxations for \(H_\infty \) and \(H_2\) static output feedback of Takagi–Sugeno continuous-time fuzzy systems. Journal of Control, Automation and Electrical Systems, 24, 33–45.

    Article  Google Scholar 

  • Wang, D., Wang, J. L., & Wang, W. (2013b). Output feedback control of networked control systems with packet dropout in both channels. Information Science, 221(1), 544–554.

  • Wang, D., Wang, J. L., & Wang, W. (2013c). \(H_\infty \) controller design of networked control systems with markov packet dropouts. IEEE Transactions on Systems, Man and Cybernetics, Part B, 43(3), 689–697.

    Article  Google Scholar 

  • Wang, T. B., Wu, C. D., Wang, Y. L., & Zhang, Y. Z. (2013a). Communication channel sharing-based network-induced delay and packet dropout compensation for networked control systems. IET Control Theory Appl, 7(6), 810–821.

  • Xie, D., Chen, X., Lv, L., & Xu, N. (2008). Asymptotical stabilisability of networked control systems: Time-delay switched system approach. IET Control Theory Applications, 8(2), 743–751.

    Article  MathSciNet  Google Scholar 

  • Xiong, J. L., & Lam, J. (2007). Stabilization of linear systems over networks with bounded packet loss. Automatica, 43(1), 80–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiong, J. L., & Lam, J. (2008). Stabilization of linear systems over networks with bounded packet loss. Automatica, 43(1), 80–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, F. W., Wang, Z. D., Daniel, W. C. H., & Gani, M. (2007). Robust \(H_\infty \) control with missing measuremnets and time delays. IEEE Transactions on Automatica Control, 52(9), 1666–1672.

    Article  Google Scholar 

  • Yu, J. M., Nan, L. S., Tang, X. M., & Wang, P. (2015). Model predictive control of non-linear systems overnet works with data quantization and packet loss. ISA Transactions, 59, 1–9.

    Article  Google Scholar 

  • Zhang, L. X., Gao, H. J., & Kaynak, O. (2013). Network-induced constraints in networked control systemsłA survey. IEEE Transactions on Automatic Control, 9(1), 403–416.

    Google Scholar 

  • Zhang, L. Q., Shi, Y., Chen, T. W., & Huang, B. (2005). A new method for stabilization of networked control systems with random delays. IEEE Transactions on Automatica Control, 50(8), 1177–1181.

    Article  MathSciNet  Google Scholar 

  • Zhang, W. A., & Yu, L. (2007). Output feedback stabilization of networked control systems with packet dropouts. IEEE Transactions on Auotmatica Control, 52(9), 1705–1710.

    Article  MathSciNet  Google Scholar 

  • Zhao, Y., Gao, H. J., & Chen, T. (2010). Fuzzy constrained predictive control of non-linear systems with packet dropouts. IET Control Theory Applications, 4(9), 1665–1677.

    Article  MathSciNet  Google Scholar 

  • Zhivoglyadov, P. V., & Middleton, R. H. (2003). Networked control design for linear systems. Automatica, 39(4), 743–750.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Liu, D., Gao, Y. B., Lam, H. K., & Sakthivel, R. (2015). Interval type-2 fuzzy control for nonlinear discrete-time systems with time-varying delays. Neurocomputing, 157(1), 22–32.

    Article  Google Scholar 

  • Zhu, Q. X., Liu, H. L., & Hu, S. S. (2008). Uniformed model of networked control systems with long time delay. Journal of Systems Engineering and Electronics, 19(2), 385–390.

    Article  MATH  Google Scholar 

  • Zou, Y. Y., Lam, J., Niu, Y. G., & Li, D. W. (2015). Constrained predictive control synthesis for quantized systems with markovian data loss. Automatica, 55, 217–225.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the High real-time WIA-PA network system-on-chip (SoC) development and demonstration applications (2015ZX03003011), National Natural Science Foundation of China (61403055), the Research Project of Chongqing Science & Technology Commission (cstc2014jcyjA40005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Wang, J. & Tang, X. Constrained Model Predictive Control of Interval Type-2 T–S Fuzzy Systems with Markovian Packet Loss. J Control Autom Electr Syst 28, 323–336 (2017). https://doi.org/10.1007/s40313-017-0310-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0310-6

Keywords

Navigation