Skip to main content
Log in

Combined Discrete-time Sliding Mode and Disturbance Observer for Current Control of Induction Motors

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper proposes a composite control strategy which combines a discrete-time sliding mode controller with a disturbance observer aiming to decouple current control of vector oriented induction motor drives. The stator current control is carried out through an indirect field orientation in a dq reference frame rotating at synchronous speed. The cross-coupling variables of the induction motor stator currents at synchronous reference frame are modeled as disturbances, and these values are estimated using a discrete-time disturbance observer. The digital implementation delay was included in the plant model formulation, resulting in a control law suitable to direct implementation in microcontrollers and digital signal processors. Then, the nominal and decoupled part of the induction machine model is used for the design of the sliding mode controller, and the additional variables are modeled as disturbances. The cross-coupling variables are observed and used in the control law. The convergence analysis is presented in discrete-time domain. Simulation and experimental results are presented to validate the theoretical analysis, and they show the good performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonge, F., Cangemi, T., D’Ippolito, F., Fagiolini, A., & Sferlazza, A. (2015). Convergence analysis of extended Kalman filter for sensorless control of induction motor. IEEE Transactions on Industrial Electronics, 62(4), 2341–2352. doi:10.1109/TIE.2014.2355133.

    Article  Google Scholar 

  • Angulo, M., & Carrillo-Serrano, R. (2015). Estimating rotor parameters in induction motors using high-order sliding mode algorithms. IET Control Theory Applications, 9(4), 573–578. doi:10.1049/iet-cta.2014.0110.

    Article  MathSciNet  Google Scholar 

  • Bahrani, B., Kenzelmann, S., & Rufer, A. (2011). Multivariable-pi-based \(dq\) current control of voltage source converters with superior axis decoupling capability. IEEE Transactions on Industrial Electronics, 58(7), 3016–3026. doi:10.1109/TIE.2010.2070776.

    Article  Google Scholar 

  • Bartoszewicz, A. (1998). Discrete-time quasi-sliding-mode control strategies. IEEE Transactions on Industrial Electronics, 45(4), 633–637. doi:10.1109/41.704892.

    Article  Google Scholar 

  • Chen, W. H. (2004). Disturbance observer based control for nonlinear systems. IEEE/ASME Transactions on Mechatronics, 9(4), 706–710. doi:10.1109/TMECH.2004.839034.

    Article  Google Scholar 

  • Comanescu, M., Xu, L., & Batzel, T. (2008). Decoupled current control of sensorless induction-motor drives by integral sliding mode. IEEE Transactions on Industrial Electronics, 55(11), 3836–3845. doi:10.1109/TIE.2008.2003201.

    Article  Google Scholar 

  • Di Gennaro, S., Rivera Dominguez, J., & Meza, M. (2014). Sensorless high order sliding mode control of induction motors with core loss. IEEE Transactions on Industrial Electronics, 61(6), 2678–2689. doi:10.1109/TIE.2013.2276311.

    Article  Google Scholar 

  • Finch, J., & Giaouris, D. (2008). Controlled AC electrical drives. IEEE Transactions on Industrial Electronics, 55(2), 481–491. doi:10.1109/TIE.2007.911209.

    Article  Google Scholar 

  • Gao, W., Wang, Y., & Homaifa, A. (1995). Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, 42(2), 117–122. doi:10.1109/41.370376.

    Article  Google Scholar 

  • Ginoya, D., Shendge, P., & Phadke, S. (2014). Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Transactions on Industrial Electronics, 61(4), 1983–1992. doi:10.1109/TIE.2013.2271597.

    Article  Google Scholar 

  • Gonzalez, T., Moreno, J., & Fridman, L. (2012). Variable gain super-twisting sliding mode control. IEEE Transactions on Automatic Control, 57(8), 2100–2105. doi:10.1109/TAC.2011.2179878.

    Article  MathSciNet  Google Scholar 

  • Holmes, D., Lipo, T., McGrath, B., & Kong, W. (2009). Optimized design of stationary frame three phase ac current regulators. IEEE Transactions on Power Electronics, 24(11), 2417–2426. doi:10.1109/TPEL.2009.2029548.

    Article  Google Scholar 

  • Holmes, D., McGrath, B., & Parker, S. (2012). Current regulation strategies for vector-controlled induction motor drives. IEEE Transactions on Industrial Electronics, 59(10), 3680–3689. doi:10.1109/TIE.2011.2165455.

    Article  Google Scholar 

  • Holtz, J. (2002). Sensorless control of induction motor drives. Proceedings of the IEEE, 90(8), 1359–1394. doi:10.1109/JPROC.2002.800726.

    Article  Google Scholar 

  • Holtz, J. (2005). Sensorless control of induction machines: With or without signal injection? IEEE Transactions on Industrial Electronics, 53(1), 7–30. doi:10.1109/TIE.2005.862324.

    Article  Google Scholar 

  • Kommuri, S., Rath, J., Veluvolu, K., Defoort, M., & Soh, Y. C. (2015). Decoupled current control and sensor fault detection with second-order sliding mode for induction motor. IET Control Theory Applications, 9(4), 608–617. doi:10.1049/iet-cta.2014.0336.

  • Krause, P. C., Wasynczuk, O., & Sudhoff, S. D. (1995). Analysis of electric machinery (2nd ed.). Piscataway: IEEE Press.

    Google Scholar 

  • Niu, Y., Ho, D., & Wang, Z. (2010). Improved sliding mode control for discrete-time systems via reaching law. IET Control Theory Applications, 4(11), 2245–2251. doi:10.1049/iet-cta.2009.0296.

    Article  MathSciNet  Google Scholar 

  • Qu, S., Xia, X., & Zhang, J. (2014). Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator. IEEE Transactions on Industrial Electronics, 61(7), 3502–3510. doi:10.1109/TIE.2013.2279369.

    Article  Google Scholar 

  • Sabanovic, A., Fridman, L. M., & Spurgeon, S. (2004). Variable structure systems: From principles to implementation (1st ed.). The Institution of Engineering and Technology. http://www.theiet.org/resources/books/control/19153.cfm.

  • Salgado, I., Chairez, I., Bandyopadhyay, B., Fridman, L., & Camacho, O. (2014). Discrete-time non-linear state observer based on a super twisting-like algorithm. IET Control Theory Applications, 8(10), 803–812. doi:10.1049/iet-cta.2013.0568.

    Article  MathSciNet  Google Scholar 

  • Stojic, D., Milinkovic, M., Veinovic, S., & Klasnic, I. (2015). Improved stator flux estimator for speed sensorless induction motor drives. IEEE Transactions on Power Electronics, 30(4), 2363–2371. doi:10.1109/TPEL.2014.2328617.

    Article  Google Scholar 

  • Utkin, V. (1993). Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 40(1), 23–36. doi:10.1109/41.184818.

    Article  Google Scholar 

  • Utkin, V. I., Guldner, J., & Shi, J. (1999). Sliding mode control in electromechanical systems (1st ed.). London: Taylor & Francis.

  • Vas, P. (1998). Sensorless vector and direct torque control. Oxford: Oxford University Press.

    Google Scholar 

  • Vieira, R. P., Gabbi, T., & Grundling, H. (2014). Sensorless decoupled IM current control by sliding mode control and disturbance observer. In IECON 2014–40th Annual Conference of the IEEE Industrial Electronics Society (pp 844–849). doi:10.1109/IECON.2014.7048599.

  • Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2015). Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances. IET Control Theory Applications, 9(4), 579–586. doi:10.1049/iet-cta.2014.0220.

    Article  MathSciNet  Google Scholar 

  • Yang, J., Li, S., & Yu, X. (2013). Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Transactions on Industrial Electronics, 60(1), 160–169. doi:10.1109/TIE.2012.2183841.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Padilha Vieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.P., Gabbi, T.S. & Gründling, H.A. Combined Discrete-time Sliding Mode and Disturbance Observer for Current Control of Induction Motors. J Control Autom Electr Syst 28, 380–388 (2017). https://doi.org/10.1007/s40313-017-0307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0307-1

Keywords

Navigation