Skip to main content
Log in

Implementation of a Rough Controller with Proportional–Integral Action to Control a Nonlinear System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper addresses the implementation of a rough controller with proportional–integral action to control a nonlinear system. The system chosen was a level process. Through practical tests, mathematical models (linear and nonlinear) are obtained from the real data of the process. The control system dynamic response in question will be compared with two approaches via discrete linear control and a fuzzy controller. The nonlinear system is a small-scale plant, common in some industrial applications. The rule-based controllers (similar to fuzzy controllers) have linguistic interpretations, are robust with regard to parametric uncertainties of the system, and have a good capacity to map nonlinear characteristics of operation. The fuzzy controllers use procedures of fuzzification and defuzzification of data that require time in the computation of the associated rules. The rough controllers do not require these procedures, requiring less computational time in the corresponding rules, which is an interesting characteristic for real-time applications. This paper presents results of computer simulations and practical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Astrom, K. J., & Wittenmark, B. (1990). Computer-controlled systems. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Braae, M., & Rutherford, D. A. (1979). Theoretical and linguistic aspects of the fuzzy logic controllers. Automatica, 15, 553–577. doi:10.1016/0005-1098(79)90005-0.

    Article  MATH  Google Scholar 

  • Dorf, R. C., & Bishop, R. H. (1998). Modern control systems (8th ed.). Menlo Park: Pearson.

    MATH  Google Scholar 

  • Driankov, D., Hellendoorn, H., & Reinfrank, M. (1996). An introduction to fuzzy control. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Filip, I., & Szeidert, I. (2016). Adaptive fuzzy PI controller with shifted control singletons. Expert Systems with Applications, 54, 1–12. doi:10.1016/j.eswa.2016.01.036.

  • Guaracy, F., Pinheiro, C. & Ferreira, L. (2014). Converting fuzzy models to rough models. In Industrial Informatics (INDIN), 12th IEEE International Conference. doi:10.1109/INDIN.2014.6945480.

  • Gupta, M. M., & Sinha, N. K. (1996). Intelligent control systems: Theory and applications. New York: IEEE Press.

    MATH  Google Scholar 

  • Jiang, Y., Zhao, H., & Fu, H. (2015). A control method to avoid obstacles for an intelligent car based on rough sets and neighborhood systems. In 10th International Conference on Intelligent Systems and Knowledge Engineering. doi:10.1109/ISKE.2015.61.

  • Lu, J., et al. (2016). A model for type-2 fuzzy rough sets. Information Sciences, 328, 359–377. doi:10.1016/j.ins.2015.08.045.

    Article  Google Scholar 

  • Machado, K., & Pinheiro, C. (2013). Rough controllers with state feedback. Engineering Applications of Artificial Intelligence. doi:10.1016/j.engappai.2013.07.019 (Elsevier, Science Direct).

  • Mamdani, E. H. (1974). Applications of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121(12), 1585–1588. doi:10.1049/piee.1974.0328.

    Article  Google Scholar 

  • Moradi, H., Setayesh, H., & Alasty, A. (2016). PID-Fuzzy control of air handling units in the presence of uncertainty. International Journal of Thermal Sciences, 109, 123–135. doi:10.1016/j.ijthermalsci.2016.05.024.

    Article  Google Scholar 

  • Náhlovský, T. (2015). A comparison study of fuzzy and PI control system for temperature control of superheated steam. In 20th International Conference on Process Control (PC), Slovakia (pp. 181–185). doi:10.1109/PC.2015.7169959.

  • Nelles, O. (2001). Nonlinear system identification: From classical approaches to neural networks and fuzzy models. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Ogata, K. (2010). Modern control engineering (5th ed.). New Jersey: Pearson Prentice Hall.

    MATH  Google Scholar 

  • Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11(5), 56–341. doi:10.1007/BF01001956.

    Article  MATH  Google Scholar 

  • Pinheiro, C., Camatta, U., & Rezek, A. (2012). Fuzzy logic controls, concepts, theories and applications. In E. P. Dadios (Ed.), Rough controller synthesis. Rijeka: INTECH.

    Chapter  Google Scholar 

  • Pinheiro, C., et al. (2010). Granular synthesis of rule-based models and function approximation using rough sets. In J. T. Yao (Ed.), Novel developments in granular computing (pp. 408–425). New York: Information Science Publishing. doi:10.4018/978-1-60566-324-1.ch017.

    Chapter  Google Scholar 

  • Pinheiro, C. A. M., & Gomide, F. A. C. (1997). Frequency response design of fuzzy controllers. In VII IFSA World Congress (Vol. 3, pp. 434–439). Praga.

  • Pinheiro, C., & Gomide, F. (1999). On the equivalence between basic fuzzy and classical controller. In VIII IFSA World Congress (Vol. 2, pp. 594–597). Taipei.

  • Pinheiro, C. A. M., & Gomide, F. A. C. (1999). Fuzzy control systems by learning method and frequency response. FUZZ-IEEE Conference, 1, 444–448. doi:10.1109/FUZZY.1999.793281.

    Google Scholar 

  • Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. New York: Prentice Hall.

    MATH  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. doi:10.1016/S0019-9958(65)90241-X.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Q., Zhang, Q., & Wang, G. (2016). The uncertainty of probabilistic rough sets in multi-granulation spaces. International Journal of Approximate Reasoning, 77, 38–54. doi:10.1016/j.ijar.2016.06.001.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank to Coordination for the Improvement of Higher Education Personnel (CAPES and FAPEMIG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana R. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, J.R., Pinheiro, C.A.M. & Lopes, B.I.L. Implementation of a Rough Controller with Proportional–Integral Action to Control a Nonlinear System. J Control Autom Electr Syst 28, 337–348 (2017). https://doi.org/10.1007/s40313-017-0302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0302-6

Keywords

Navigation