Skip to main content
Log in

Synchrophasors-Based Transmission Line Protection in the Presence of STATCOM

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Distance relay identifies the type and location of fault by measuring the transmission line impedance. However, any other factors that cause miscalculating the measured impedance make the relay detect the fault in incorrect location or do not detect the fault at all. One of the important factors which directly increases the measured impedance by the relay is fault resistance. Another factor that indirectly changes the impedance of the transmission line is static synchronous compensator (STATCOM). When a fault occurs, measured signals by the relay change due to the variation of current injected by the STATCOM and it makes the calculated impedance to be incorrect. This paper provides a method based on the combination of distance and differential protection. At first, faulty transmission line is detected according to the current data of buses. After that the fault location is calculated using the proposed algorithm on the transmission line. This algorithm is based on active power calculation of the buses. Fault resistance is calculated from the active powers, and its effect will be deducted from calculated impedance by the algorithm. Furthermore, by choosing the appropriate data bus, the effect of STATCOM is eliminated and fault location will be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abe, M., Emura, T., Otsuzuki, N., & Takeuchi, M. (1995). Development of a new fault location system for multi-terminal single transmission lines. IEEE Transactions on Power Delivery, 10(1), 159–168.

    Article  Google Scholar 

  • Aggarwal, R. K., & Johns, A. T. (1990). Digital differential relaying scheme for teed circuits based on voltage and current signal comparison. Proceedings of the Institute of Electrical Engineering on Generation, Transmission and Distribution, 137(6), 414–423.

    Article  Google Scholar 

  • Albasri, F. A., Sidhu, T. S., & Varma, R. K. (2007). Performance comparison of distance protection schemes for shunt-FACTS compensated transmission lines. IEEE Transactions on Power Delivery, 22(4), 2116–2125.

    Article  Google Scholar 

  • Brahma, S. M. (2005). Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements. IEEE Transactions on Power Delivery, 20(2), 1325–1331.

    Article  Google Scholar 

  • Brahma, S. M. (2006). New fault-location method for a single multiterminal transmission line using synchronized phasor measurements. IEEE Transactions on Power Delivery, 21(3), 1148–1153.

    Article  Google Scholar 

  • Chaudhurihi-Shan, N. R., Chakraborty, D., & Chaudhuri, B. (2011). An architecture for FACTS controllers to deal with bandwidth-constrained communication. IEEE Transactions on Power Delivery, 26(1), 188–196.

    Article  Google Scholar 

  • Daniel, S. J., Aggarwal, R. K., & Johns, A. T. (1993). Three terminal line protection based on a superimposed component impedance relay. Proceedings of the Institute of Electrical Engineering on Generation, Transmission and Distribution, 140(6), 447–454.

    Article  Google Scholar 

  • Dubey, R., Samantaray, S. R., & Panigrahi, B. K. (2016). Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm. IET Generation, Transmission and Distribution, 10(1), 247–256.

    Article  Google Scholar 

  • Eissa, M. M. (2006). Ground distance relay compensation based on fault resistance calculation. IEEE Transactions on Power Delivery, 21(4), 1830–1835.

    Article  MathSciNet  Google Scholar 

  • Filomena, A. D., Salim, R. H., Resener, M., & Bretas, A. S. (2008). Ground distance relaying with fault-resistance compensation for unbalanced systems. IEEE Transactions on Power Delivery, 23(3), 1319–1326.

    Article  Google Scholar 

  • Ghorbani, A. (2015). An adaptive distance protection scheme in the presence of phase shifting transformer. Electric Power Systems Research, 129, 170–177.

    Article  Google Scholar 

  • Ghorbani, A., & Arablu, M. (2015). Ground Distance relay compensation in the presence of delta-hexagonal phase shifting Transformer. IET Generation, Transmission and Distribution, 9(15), 2091–2098.

    Article  Google Scholar 

  • Ghorbani, A., & Arablu, M. (2015). Application of turbine torsional oscillation damping controller to static Var compensator. Journal of Engineering for Gas Turbines and Power, 137(10), 102501–102507.

    Article  Google Scholar 

  • Ghorbani, A., Mozafari, B., & Khederzadeh, M. (2012). Impact of SVC on the protection of transmission lines. International Journal of Electrical Power and Energy Systems, 42(1), 702–709.

    Article  Google Scholar 

  • Hashemi, S. M., Tarafdar Hagh, M., & Seyedi, H. (2014). A novel backup distance protection scheme for series-compensated transmission lines. IEEE Transactions on Power Delivery, 29(2), 699–707.

    Article  Google Scholar 

  • IEEE Std. C37.118-2005. (2005). IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Std. C37.118-2005.

  • Jafarian, P., & Sanaye-Pasand, M. (2013). High-frequency transients-based protection of multiterminal transmission lines using the SVM technique. IEEE Transactions on Power Delivery, 28(1), 188–196.

    Article  Google Scholar 

  • Khederzadeh, M., & Ghorbani, A. (2011). STATCOM modeling impacts on performance evaluation of distance protection of transmission lines. European Transaction on Electrical Power, 21(8), 2063–2079.

    Article  Google Scholar 

  • Krishnanand, K. R., & Dash, P. K. (2013). A new real-time fast discrete S-transform for cross-differential protection of shunt-compensated power systems. IEEE Transactions on Power Delivery, 28(1), 402–410.

    Article  Google Scholar 

  • Leon, A. E., Mauricio, J. M., Gómez-Expósito, A., & Solsona, J. A. (2012). Hierarchical wide-area control of power systems including wind farms and FACTS for short-term frequency regulation. IEEE Transactions on Power Systems, 27(4), 2084–2092.

    Article  Google Scholar 

  • Leon, A. E., & Solsona, J. A. (2014). Power oscillation damping improvement by adding multiple wind farms to wide-area coordinating controls. IEEE Transactions on Power Systems, 29(3), 1356–1364.

    Article  Google Scholar 

  • Lin, T. C., Lin, P. Y., & Liu, C. W. (2014). An algorithm for locating faults in three-terminal multisection nonhomogeneous transmission lines using synchrophasor measurements. IEEE Transactions on Smart Grid, 5(1), 38–50.

    Article  Google Scholar 

  • Liu, Q. K., Huang, S. F., Liu, H. Z., & Liu, W. S. (2008). Adaptive impedance relay with composite polarizing voltage against fault resistance. IEEE Transactions on Power Delivery, 23(2), 586–592.

    Article  MathSciNet  Google Scholar 

  • Makawana, V. H., & Bhalja, B. R. (2012). A new digital distance relaying scheme for compensation of high-resistance faults on transmission line. IEEE Transactions on Power Delivery, 27(4), 2133–2140.

    Article  Google Scholar 

  • Raman, S., Gokaraju, R., & Jain, A. (2013). An adaptive fuzzy Mho relay for phase backup protection with infeed from STATCOM. IEEE Transactions on Power Delivery, 28(1), 120–128.

    Article  Google Scholar 

  • Ree, J. D. L., Centeno, V., Thorp, J. S., & Phadke, A. G. (2010). Synchronized phasor measurement applications in power systems. IEEE Transactions on Smart Grid, 1(1), 20–27.

    Article  Google Scholar 

  • Sarangi, S., & Pradhan, A. K. (2014). Synchronised data-based adaptive backup protection for series compensated line. IET Generation, Transmission and Distribution, 8(12), 1979–1986.

    Article  Google Scholar 

  • Shepard, D. P., Humphreys, T. E., & Fansler, A. A. (2012). Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. International Journal of Critical Infrastructure Protection, 5(3–4), 146–153.

    Article  Google Scholar 

  • Sidhu, T. S., Varma, R. K., Gangadharan, P. K., Albasri, F. A., & Ortiz, G. R. (2005). Performance of distance relays on shunt-FACTS compensated transmission lines. IEEE Transactions on Power delivery, 20(3), 1837–1845.

    Article  Google Scholar 

  • Taylor, C. W. (2006). Wide-area stability controls. In Presented in Imperial College, London, U.K.

  • Venkatesh, C., & Swarup, K. S. (2014). Steady-state error estimation in distance relay for single phase to ground fault in series-compensated parallel transmission lines. IET Generation, Transmission and Distribution, 8(7), 1318–1337.

    Article  Google Scholar 

  • Xu, Z. Y., Jiang, S. J., Yang, Q. X., & Bi, T. S. (2010). Ground distance relaying algorithm for high resistance fault. IET Generation, Transmission and Distribution, 4(1), 27–35.

    Article  Google Scholar 

  • Yu, C.-S., Liu, C.-W., Yu, S.-L., & Jiang, J.-A. (2002). A new PMU-based fault location algorithm for series compensated lines. IEEE Transactions on Power Delivery, 17(1), 33–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, A., Ghorbani, M. & Ebrahimi, S.Y. Synchrophasors-Based Transmission Line Protection in the Presence of STATCOM. J Control Autom Electr Syst 28, 147–157 (2017). https://doi.org/10.1007/s40313-016-0288-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0288-5

Keywords

Navigation