Skip to main content
Log in

Adaptive Neuro-Fuzzy Black-Box Modeling Based on Instrumental Variable Evolving Algorithm

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, an online identification algorithm for instrumental variable-based evolving neuro-fuzzy modeling applied to dynamic systems in noisy environment is proposed. The adopted methodology is based on neuro-fuzzy inference system with Takagi–Sugeno evolving structure, which employs an adaptive distance norm based on the maximum likelihood criterion with instrumental variable recursive parameter estimation. The application and performance analysis of the proposed algorithm is based on black-box modeling of a 2DOF Helicopter with errors in variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Acampora, G., Pedrycz, W., & Vasilakos, A. V. (2014). Efficient modeling of MIMO systems through timed automata based neuro-fuzzy inference engine. International Journal of Approximate Reasoning, 55(6), 1336–1356. (Neuro-fuzzy systems; Timed Automata based Fuzzy Systems).

    Article  MATH  MathSciNet  Google Scholar 

  • Angelov, P. (2013). Autonomous learning systems: From data streams to knowledge in real-time. In IEEE press series on computational intelligence. Willey, ISBN 9781119951520.

  • Angelov, P., Filev, D., & Kasabov, N. (2010). Evolving intelligent systems: Methodology and applications. In IEEE press series on computational intelligence. Willey-Blackwell, ISBN 9780470287194.

  • Arya, V., & Rathy, R. K. (2014). An efficient neuro-fuzzy approach for classification of Iris dataset. In International conference on reliability, optimization and information technology (pp. 161–165). doi:10.1109/ICROIT.2014.6798304.

  • Babuska, R., Schutter, B., Lendek, Zs, & Guerra, T. M. (2010). Stability analysis and nonlinear observer design using Takagi–Sugeno fuzzy models (Vol. 262). Berlin: Springer. doi:10.1007/978-3-642-16776-8.

    MATH  Google Scholar 

  • Babuska, R. (1998). Fuzzy modeling control. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Baruah, R. D., & Angelov, P. (2012). Evolving local means method for clustering of streaming data. In IEEE international conference on fuzzy systems (FUZZ-IEEE), 2012 (pp. 1–8). doi:10.1109/FUZZ-IEEE.2012.6251366.

  • Baruah, R. D., Angelov, P., & Baruah, D. (2014). Dynamically evolving clustering for data streams. In IEEE conference on evolving and adaptive intelligent systems (EAIS)2014 (pp. 1–6). doi:10.1109/TFUZZ.2013.2264938.

  • Bodyanskiy, Y., Tyshchenko, O., & Kopliani, D. (2015). An evolving neuro-fuzzy system for online fuzzy clustering. In Computer science and information technologies (pp. 158–161). doi:10.1109/STC-CSIT.2015.7325456.

  • Bodyanskiy, Y., Vynokurova, O., Setlak, G., & Pliss, I. (2015). Hybrid neuro-neo-fuzzy system and its adaptive learning algorithm. In Computer science and information technologies (pp. 111–114). doi:10.1109/STC-CSIT.2015.7325445.

  • Bordignon, F., & Gomide, F. (2014). Uninorm based evolving neural networks and approximation capabilities. Neurocomputing, 127, 13–20. (ELSEVIER).

    Article  Google Scholar 

  • Costa, B. S., Angelov, P. P., & Guedes, L. A. (2015). Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing, 150(A), 289–303. doi:10.1016/j.neucom.2014.05.086.

    Article  Google Scholar 

  • Dovzan, D., Logar, V., & Skrjanc, I. (2015). Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Transactions on Fuzzy Systems, 23(5), 1761–1776. doi:10.1109/TFUZZ.2014.2379252.

    Article  Google Scholar 

  • Han, L., Yi, D., Lifan, Z., & Ding, L. (2015). Neuro-fuzzy control based on online least square support vector machines. In Proceedings of the 34th Chinese control conference (pp. 3411–3416).

  • Lemos, A., Caminhas, W., & Gomide, F. (2011). Multivariable Gaussian evolving fuzzy modeling system. IEEE Transactions on Fuzzy Systems, 19(1), 91–104. doi:10.1109/TFUZZ.2010.2087381.

    Article  Google Scholar 

  • Liu, Y., Zhang, W., & Zhang, Y. (2013). Data driven modeling of human welder intelligence: A neuro-fuzzy approach. In IEEE international conference on automation science and engineering (pp. 663–668). doi:10.1109/CoASE.2013.6653890.

  • Liu, X., Wang, J., & Zheng, W. X. (2011). Convergence analysis of refined instrumental variable method for continuous-time system identification. IET Control Theory and Applications, 5(7), 868–877.

    Article  MathSciNet  Google Scholar 

  • Lughofer, E. (2011). Evolving fuzzy systems: Methodologies, advanced concepts and applications. Berlin: Springer. ISBN 9783642180866.

    Book  MATH  Google Scholar 

  • Lughofer, E., Cernuda, C., Kindermann, S., & Pratama, M. (2015). Generalized smart evolving fuzzy systems. Evolving Systems, 6(4), 269–292. doi:10.1007/s12530-015-9132-6.

    Article  Google Scholar 

  • Lughofer, E., & Sayed-Mouchaweh, M. (2015). Autonomous data stream clustering implementing incremental split-and-merge techniques–towards a plug-and-play approach. Information Sciences, 204(C), 54–79. doi:10.1016/j.ins.2015.01.010.

    Article  Google Scholar 

  • Maciel, L., Gomide, F., & Ballini, R. (2012). MIMO evolving participatory learning fuzzy modeling. In IEEE international conference on fuzzy systems (FUZZ-IEEE), 2012 (pp. 1–8). doi:10.1109/FUZZ-IEEE.2012.6251170.

  • Petelin, D., & Kocijan, J. (2014). Evolving Gaussian process models for predicting chaotic time-series. In IEEE conference on evolving and adaptive intelligent systems (EAIS), 2014 (pp. 1–8). doi:10.1109/EAIS.2014.6867476.

  • Pratama, M., Anavatti, S. G., & Lughofer, E. (2014). GENEFIS: Toward an effective localist network. IEEE Transactions on Fuzzy Systems, 22(3), 547–562.

    Article  Google Scholar 

  • Rajab, S., & Sharma, V. (2015). Performance evaluation of ANN and neuro-fuzzy system in business forecasting. In 2nd international conference on computing for sustainable global development (INDIACom), 2015 (pp. 749–754).

  • Sayed-Mouchaweh, M., & Lughofer, E. (2012). Learning in non-stationary environments: Methods and applications. Berlin: Springer. ISBN 9781441980199.

    Book  MATH  Google Scholar 

  • Serra, G. (2012). Frontiers in advanced control systems, InTech, ISBN 9789535106777. doi:10.5772/1267.

  • Serra, G., & Bottura, C. (2007). An IV–QR algorithm for neuro-fuzzy multivariable online identification. IEEE Transactions on Fuzzy Systems, 15(2), 200–210. doi:10.1109/TFUZZ.2006.879997.

  • Serra, G., & Bottura, C. (2009). Fuzzy instrumental variable approach for nonlinear discrete-time systems identification in a noisy environment. Science direct: Fuzzy sets and systems, 160(4), 500–520. doi:10.1016/j.fss.2008.06.020. (ELSEVIER).

  • Silva, A., Caminhas, W., Lemos, A., & Gomide, F. (2014). Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network. In IEEE symposium on computational intelligence in control and automation (CICA), 2014 (pp. 1–8). doi:10.1109/CICA.2014.7013229.

  • Skrjanc, I., Dovzan, D., & Gomide, F. (2014). Evolving fuzzy-madel-based on c-regression clustering. In IEEE conference on evolving and adaptive intelligent systems (EAIS), 2014 (pp. 1–7). doi:10.1109/EAIS.2014.6867481.

  • Skrjanc, I. (2015). Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Transactions on Fuzzy Systems, 23(4), 861–871. doi:10.1109/TFUZZ.2014.2329711.

  • Soleimani-B, H., Lucas, C., & Arrabi, N. (2010). Recursive Gath–Geva clustering as basis for evolving neuro-fuzzy modeling. In IEEE conference on fuzzy systems 2010 (Vol. 1, pp. 1–7). doi:10.1109/ICSSSM.2014.6874031.

  • Sun, Z., Mao, K. Z., Tang, W., Mak, L. O., Xian, K., & Liu, Y. (2014). Knowledge-based evolving clustering algorithm for data stream. In 11th international conference on service systems and service management (ICSSSM), 2014 (pp. 1–6).

  • Tsumura, K. (2012). Optimal quantization of signals for system identification. In IEEE transactions on automatic control, 2009 (Vol. 54(12), pp. 2909–2915). doi:10.1109/TAC.2009.2033859.

  • Tsumura, K., & Maciejowski, J. (2003). Optimal quantization of signals for system identification. In European control conference (ECC), Cambridge, UK (pp. 785–790).

  • Tsumura, K., & Oishi, Y. (1999). Optimal length of data for identification of time varying system, decision and control, 1999. In Proceedings of the 38th IEEE conference on Phoenix, AZ, 1999 (Vol. 4, pp. 3224-3229). doi:10.1109/CDC.1999.827766.

  • Vishnupriyan, J., Manoharan, P. S., & Ramalakshmi, A. P. S. (2014). Uncertainty modeling of nonlinear 2-DOF helicopter model. In 2014 international conference on computer communication and informatics (ICCCI -2014) (pp. 1–6). doi:10.1109/ICCCI.2014.6921840.

  • Yilmaz, S., & Oysal, Y. (2014). Nonlinear system modeling with dynamic adaptive neuro-fuzzy inference system. In IEEE international symposium on innovations in intelligent systems and applications (INISTA) proceedings, 2014 (pp. 205–211). doi:10.1109/INISTA.2014.6873619.

  • Young, P. (2015). Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box–Jenkings model. Automatica, 52, 35–46. doi:10.1016/j.automatica.2014.10.126. (ELSEVIER).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPEMA and encouraged by Ph.D. Program in Electrical Engineering of Federal University of Maranhao (PPGEE/UFMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginalber Serra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, O., Serra, G. Adaptive Neuro-Fuzzy Black-Box Modeling Based on Instrumental Variable Evolving Algorithm. J Control Autom Electr Syst 28, 50–67 (2017). https://doi.org/10.1007/s40313-016-0285-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0285-8

Keywords

Navigation