Skip to main content
Log in

A Novel Model Order Reduction Technique for Linear Continuous-Time Systems Using PSO-DV Algorithm

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper a new frequency-domain model order reduction method is proposed for the reduction of higher-order linear continuous-time single input single output systems using a recent hybrid evolutionary algorithm. The hybrid evolutionary algorithm is developed from the mutual synergism of particle swarm optimization and differential evolution algorithm. The objective of the proposed method is to determine an optimal reduced-order model for the given original higher-order linear continuous-time system by minimizing the integral square error (ISE) between their step responses. The method has significant features like easy implementation, good performance, numerically stable and fast convergence. Applicability and efficacy of the method are shown by illustrating an IEEE type-1 DC excitation system, and by a typical ninth-order system taken from the literature. The results obtained from the proposed algorithm are compared with many familiar and recent reduction techniques that are available in the literature, in terms of step ISE values and impulse response energies of the models. Furthermore step and frequency responses are also plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguirre, L. A. (1992). The least-squares Padé method for model reduction. International Journal of Systems Science, 23(10), 1559–1570.

    Article  MATH  MathSciNet  Google Scholar 

  • Antoulas, A. C., & Sorensen, D. C. (2001). Approximation of large-scale dynamical systems: An overview. International Journal of Applied Mathematics and Computer Science, 11(5), 1093–1121.

    MATH  MathSciNet  Google Scholar 

  • Bansal, J. C., Harish, S., & Arya, K. V. (2011) Model order reduction of single input single output systems using Artificial Bee Colony Optimization algorithm. NICSO-2011, SCI-387 (pp. 85–100).

  • Boby, P., & Pal, J. (2010). An evolutionary computation based approach for reduced order modelling of linear systems. IEEE International conference on computational intelligence and computing research, Coimbatore, India. doi:10.1109/ICCIC.2010.5705729.

  • Chen, T., Chang, C., & Han, K. (1979). Reduction of transfer functions by the stability-equation method. Journal of the Franklin Institute, 308(4), 389–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Choi, B. K., Chiang, H. D., Wu, H., Li, H., David, C. Y. (2008). Exciter model reduction and validation for large-scale power system dynamic security assessment. IEEE Conference: PES, Pittsburgh (pp. 1–7).

  • Choo, Y. (1999). Improvement to modified routh approximation method. IEE Electronics Letters, 35(7), 606–607.

    Article  Google Scholar 

  • Das, S., Ajith, A., & Amit, K. (2008). Particle swarm optimization and differential evolution algorithms: Technical analysis, applications and hybridization perspectives. Studies in Computational Intelligence (SCI), 116, 1–38.

    Google Scholar 

  • Deepa, S. N., & Sugumaran, G. (2011). MPSO based model order formulation technique for SISO continuous systems. World Academy of Science, Engineering and Technology: International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5(3), 288–293.

    Google Scholar 

  • Desai, S. R., & Prasad, R. (2013). A new approach to order reduction using stability equation and big bang big crunch optimization. Systems Science & Control Engineering, 1(1), 20–27.

    Article  Google Scholar 

  • Farsangi, M. M., NasiriSoloklo, H., & Hajmohammadi, R. (2015). Model order reduction based on moment matching using Legendre wavelet and harmony search algorithm. IJST, Transactions of Electrical Engineering, 39(E1), 39–54.

    Google Scholar 

  • Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution. NewYork: Wiley.

    MATH  Google Scholar 

  • George, D. H., & Luss, R. (1990). Model reduction by minimization of integral square error performance indices. Journal of the Franklin Institute, 327(3), 343–357.

    Article  MATH  Google Scholar 

  • Hwang, C. (1984). Mixed method of routh and ise criterion approaches for reduced-order modeling of continuous-time systems. Journal of Dynamic Systems, Measurement, and Control, 106(4), 353–356.

    Article  MATH  Google Scholar 

  • Hwang, C., & Wang, K. Y. (1984). Optimal routh approximations for continuous-time systems. International Journal of Systems Science, 15(3), 249–259.

    Article  MATH  Google Scholar 

  • Jamshidi, M. (1997). Large scale systems: Modeling, control, and fuzzy logic. Upper Saddle River, NJ: Prentice-Hall. Inc.

    MATH  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE International Conference: Neural Networks, Perth(WA), 4, 1942–1948.

    Google Scholar 

  • Kennedy, J., Eberhart, R., & Shi, Y. (2001). Swarm intelligence. Burlington: Morgan Kaufmann Academic Press.

  • Krishnamurthy, V., & Seshadri, V. (1978). Model reduction using the routh stability criterion. IEEE Transactions on Automatic Control, 23(4), 729–731.

    Article  Google Scholar 

  • Kuo, B. C., & Farid, G. (2007). Automatic control systems (8th ed.). NewYork: Wiley.

    Google Scholar 

  • Lepschy, A., Antoniomian, G., & Viaro, U. (1988). System approximation by matching the impulse response energies. Journal of the Franklin Institute, 325(1), 17–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Lucas, T. N. (1983). Factor division: A useful algorithm in model reduction. IEE Proceedings D: Control Theory and Applications, 130(6), 362–364.

    Article  MATH  Google Scholar 

  • Lucas, T. N. (1993). Optimal model reduction by multipoint pade approximation. Journal of the Franklin Institute, 330(1), 79–91.

    Article  MATH  MathSciNet  Google Scholar 

  • Mukherjee, S., & Mishra, R. (1987). Order reduction of linear systems using an error minimization technique. Journal of the Franklin Institute, 323(1), 23–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Mukherjee, S., & Mittal, R. C. (2005). Model order reduction using response-matching technique. Journal of the Franklin Institute, 342(5), 503–519.

    Article  MATH  MathSciNet  Google Scholar 

  • Munro, A. R., & Lucas, T. N. (1991). Model reduction by generalised least squares method. Electronics Letters, 27(15), 1383–1384.

    Article  Google Scholar 

  • NasiriSoloklo, H., & Maghfoori Farsangi, M. (2014). Order reduction by minimizing integral square error and \(H_\infty \) norm of error. Journal of Advances in Computer Research, 5(1), 29–42.

  • Pamar, G., Mukherjee, S., & Prasad, R. (2007). Relative mapping errors of linear time invariant systems caused by particle swarm optimized reduced order model. International Journal of Computer, Information, System Science and Engineering, 1(4), 83–89.

    Google Scholar 

  • Santosh, K. V. S., Sandeep, G., & Vasu, G. (2012). Reduction of large scale linear dynamic SISO and MIMO systems using differential evolution optimization algorithm. IEEE students conference on electrical, electronics and computer science (pp. 180–185). Bhopal. doi:10.1109/SCEECS.2012.6184732.

  • Schilders, W. H., VanderVorst, H. A. & Rommes, J. (Eds.) (2008). Model order reduction: Theory, research aspects and applications, Hardcover (pp. 3–32). http://www.springer.com/ISBN:978-3-540-78840-9.

  • Sikander, A., & Prasad, R. (2015). Soft computing approach for model order reduction of linear time invariant systems. Circuits, Systems, and Signal Processing, 34(11), 3471–3487.

    Article  Google Scholar 

  • Vasu, G., Sivakumar, M., & Ramalingaraju, M. (2016a). A novel method for optimal model simplification of large scale linear discrete-time systems. International Journal of Automation and Control, 10(2), 120–141.

    Article  Google Scholar 

  • Vasu, G., Sivakumar, M., & Ramalingaraju, M. (2016b). Optimal least squares model approximation for large-scale linear discrete-time systems. Transactions of the Institute of Measurement and Control,. doi:10.1177/0142331216649023.

    Google Scholar 

  • Vishwakarma, C. B., & Prasad, R. (2009). MIMO system reduction using modified pole clustering and genetic algorithm. Modelling and Simulation in Engineering, 2009, 1–5. doi:10.1155/2009/540895.

  • Vishwakarma, C. B., & Prasad, R. (2014). Time domain model order reduction using Hankel matrix approach. Journal of the Franklin Institute, 351(2014), 3445–3456.

    Article  MATH  MathSciNet  Google Scholar 

  • Yao, X. (1999). Evolutionary computation: Theory and applications. Singapore: World Scientific Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Mangipudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, V., Mangipudi, S. & Manyala, R. A Novel Model Order Reduction Technique for Linear Continuous-Time Systems Using PSO-DV Algorithm. J Control Autom Electr Syst 28, 68–77 (2017). https://doi.org/10.1007/s40313-016-0284-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0284-9

Keywords

Navigation