Skip to main content

Advertisement

Log in

Reconfiguration of Radial Distribution Systems with Variable Demands Using the Clonal Selection Algorithm and the Specialized Genetic Algorithm of Chu–Beasley

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents two new approaches to solve the reconfiguration problem of electrical distribution systems (EDSs) with variable demands, using the CLONALG and the SGACB algorithms. The CLONALG is a combinatorial optimization technique inspired by biological immune systems, which aims at reproducing the main properties and functions of the system. The SGACB is an optimization algorithm inspired by natural selection and the evolution of species. The reconfiguration problem with variable demands is a complex combinatorial problem that aims at identifying the best radial topology for an EDS, while satisfying all technical constraints at every demand level and minimizing the cost of energy losses in a given operation period. Both algorithms were implemented in C++ and test systems with 33, 84, and 136 nodes, as well as a real system with 417 nodes, in order to validate the proposed methods. The obtained results were compared with results available in the literature in order to verify the efficiency of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelaziz, A. Y., Mohammed, F. M., Mekhamer, S. F., & Badr, M. A. I. (2009). Distribution system reconfiguration using a modified particle swarm optimization algorithm. Electric Power Systems Research, 79, 1521–1530.

    Article  Google Scholar 

  • Abdelaziz, A. Y., Mohammed, F. M., Mekhamer, S. F., & Badr, M. A. I. (2010). Distribution system reconfiguration using a modified tabu search algorithm. Electric Power Systems Research, 80, 943–953.

    Article  Google Scholar 

  • Baran, M. E., & Wu, F. F. (1989). Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Transactions on Power Delivery, 4(2), 1401–1407.

    Article  Google Scholar 

  • Bernal-Agustin, J. L. (1998) Application of genetic algorithms to the optimal design of power distribution systems. 346 f. Tesis, University of Zaragoza, Zaragoza.

  • Borland 6.0 Version, C++ Builder.

  • Bueno, E. A., Lyra, C., & Cavellucci, C. (2004). Distribution network reconfiguration for loss reduction with variable demands. In IEEE Latin America transmission and distribution conference (pp. 384–389). Colombia: Medellin.

  • Carpaneto, E., & Chicco, G. (2008). Distribution system minimum loss reconfiguration in the hyper-cube ant colony optimization framework. Electric Power Systems Research, 78, 2037–2045.

    Article  Google Scholar 

  • Carreño, E. M., Romero, R., & Feltrin, A. P. (2008). An efficientcodification to solve distribution network reconfiguration for lossreduction problem. IEEE Transactions on Power Systems, 23(4), 1542–1551.

    Article  Google Scholar 

  • Chang, H. C., & Kuo, C. C. (1994). Network reconfiguration in distribution systems using simulated annealing. Electric Power Systems Research, 29(3), 227–238.

    Article  Google Scholar 

  • Chiou, J. P., Chang, C. F., & Su, C. T. (2005). Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems. IEEE Transactions on Power Systems, 20(2), 668–674.

    Article  Google Scholar 

  • Chu, P., & Beasley, J. E. (1997). A genetic algorithm for the generalized assignment problem. Computers and Operations Research, 24(1), 17–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Civanlar, S., Grainger, J. J., & Lee, S. S. H. (1988). Distribution feeder reconfiguration for loss reduction. IEEE Transactions on Power Delivery, 3(3), 1217–1223.

    Article  Google Scholar 

  • de Castro, L. N., & Timmis, J. (2002). Artificial immune systems: A new computational intelligence approach (1st ed.). Berlin: Springer.

    MATH  Google Scholar 

  • de Castro, L. N., & Von Zuben, F. J. (2000) The clonal selection algorithm with engineering applications. In Workshop on artificial immune systems and their applications (pp. 36–37).

  • de Franca, F. O., Von Zuben, F. J., & de Castro, L. N. (2005). An artificial immune network for multimodal function optimization on dynamic environments. In GECCO. Washington, DC, USA (pp. 289–296).

  • Franco, J. F., Lavorato, M., Rider, M. J., & Romero, R. (2012). An efficient implementation of tabu search in feeder reconfiguration of distribution systems. In IEEE PES general meeting, San Diego, California, USA (pp. 1–8).

  • Guimarães, M. A. N., Castro, C. A., & Romero, R. (2010). Distribution system operation optimisation through reconfiguration and capacitor allocation by a dedicated genetic algorithm. IET Generation, Transmission & Distribution, 4(11), 1213–1222.

    Article  Google Scholar 

  • Inoue, T., Takano, K., Watanabe, T., & Kawahara, J. (2014). Distribution loss minimization with guaranteed error bound. IEEE Transactions on Smart Grid, 5(1), 102–111.

    Article  Google Scholar 

  • Kavousi-Fard, A., & Niknam, T. (2014). Optimal distribution feeder reconfiguration for reliability improvement considering uncertainty. IEEE Transactions on Power Delivery, 29(3), 1344–1353.

    Article  Google Scholar 

  • Kim, H., Ko, Y., & Jung, K. H. (1993). Artificial neural network based feeder reconfiguration for loss reduction in distribution systems. IEEE Transactions on Power Delivery, 8(3), 1356–1366.

    Article  Google Scholar 

  • Lavorato, M., Franco, J. F., Rider, M. J., & Romero, R. (2012). Imposing radiality constraints in distribution system optimization problems. IEEE Transaction on Power Systems, 27(1), 172–180.

    Article  Google Scholar 

  • Merlin, A., & Back, H. (1975) Search for a minimal-loss operating spinning tree configuration in an urban power distribution system. In Power System computation conference, Cambridge, UK (pp. 1–18).

  • Nara, K., Shiose, A., Kitagawa, M., & Ishihara, T. (1992). Implementation of genetic algorithm for distribution systems loss minimum reconfiguration. IEEE Transactions on Power Systems, 7(3), 1044–1051.

    Article  Google Scholar 

  • Possagnolo, L. H. F. M. (2015) Distribution systems reconfiguration operating in several demand levels through of the variable neighborhood search (Master’s Thesis), Campus of Ilha Solteira, Unesp, Univ Estadual Paulista (in Portuguese).

  • Queiroz, L. M. O., & Lyra, C. (2009). Adaptive hybrid genetic algorithm for techinical loss reduction in distribution networks under variable demands. IEEE Transactions on Power Systems, 24(1), 445–453.

    Article  Google Scholar 

  • Salazar, H., Gallego, R., & Romero, R. (2006). Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems. IEEE Transactions on Power Delivery, 21(3), 1735–1742.

    Article  Google Scholar 

  • Shirmohammadi, D., Hong, H. W., Semlyen, A., & Luo, G. X. (1988). A compensation based power flow method for weakly meshed distribution and transmission networks. IEEE Transactions on Power Systems, 3(2), 753–762.

  • Silva, I. J., Rider, M. J., Romero, R., Garcia, A. V., & Murari, C. A. (2005). Transmission network expansion planning with security constraints. IEE Proceedings - Generation, Transmission and Distribution, 152(6), 828–836.

  • Souza, S. S. F., Romero, R., Pereira, J., & Saraiva, J. T. (2015a). Specialized genetic algorithm of Chu-Beasley applied to the distribution system reconfiguration problem considering severaldemand scenarios. In IEEE powertech, Eindhoven (pp. 1–6).

  • Souza, S. S. F., Romero, R., & Franco, J. F. (2015b). Artificial immune networks Copt-aiNet and Opt-aiNet applied to the reconfiguration problem of radial electrical distribution systems. Electric Power Systems Research, 119, 304–312.

    Article  Google Scholar 

  • Zhang, D., Fu, Z., & Zhang, L. (2007). An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electric Power Systems Research, 77(5–6), 685–694.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge INESC TEC, Porto, Portugal and CNPq/Brazil and CAPES/Brazil for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone S. F. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, S.S.F., Romero, R., Pereira, J. et al. Reconfiguration of Radial Distribution Systems with Variable Demands Using the Clonal Selection Algorithm and the Specialized Genetic Algorithm of Chu–Beasley. J Control Autom Electr Syst 27, 689–701 (2016). https://doi.org/10.1007/s40313-016-0268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0268-9

Keywords

Navigation