Skip to main content

Advertisement

Log in

Mathematical Modeling of Electrical Grid Current and Voltage Waveforms for Protective Relay Tests Under Actual Faulty Grid Conditions

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Protective relays need to be tested under actual faulty grid conditions. On the other hand, their subsystems, as the signal conditioners, A/D converters, synchronization devices and digital filters, often need to be tested with current and voltage waveforms containing known DC, fundamental and harmonic components, since the relay operation principles are usually based on these components. Available on the market, there are many EMTP to generate high-fidelity faulty waveforms and many test sets to playback COMTRADE files capable of supporting most test cases for relays. However, these devices do not have the ability to formulate a physically meaningful grid current and voltage mathematical model. That model can be useful to improve protective relays performance tests by comparing the relay operation with its mathematical model. Besides, the waveforms model grants flexibility and accuracy to resample an actual fault register. Further, the model can be useful in relay coordination studies, performed with EMTP. In this work, we propose a fitting scheme to build a physically meaningful current and voltage waveforms model from EMTP or actual grid fault registers. Five hundred fifty current or voltage waveforms were fitted by our scheme and suitable models were achieved, based on the coefficients of determination, which is the selected measure of goodness of fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andrei, H., Ivanovici, T., Predusca, G., Diaconu, E., & Andrei, P. (2012). Curve fitting method for modeling and analysis of photovoltaic cells characteristics. In: 2012 IEEE international conference on automation quality and testing robotics (AQTR), pp. 307–312. doi:10.1109/AQTR.2012.6237722.

  • Barros, J., & Diego, R. (2008). Analysis of harmonics in power systems using the wavelet-packet transform. IEEE Transactions on Instrumentation and Measurement, 57(1), 63–69. doi:10.1109/TIM.2007.910101.

    Article  Google Scholar 

  • Batista, Y., de Souza, H., Neves, F., Dias Filho, R., & Bradaschia, F. (2015). Variable-structure generalized delayed signal cancellation pll to improve convergence time. IEEE Transactions on Industrial Electronics, 62(11), 7146–7150. doi:10.1109/TIE.2015.2443108.

    Article  Google Scholar 

  • Byeon, G., Oh, S., & Jang, G. (2011). A new dc offset removal algorithm using an iterative method for real-time simulation. IEEE Transactions on Power Delivery, 26(4), 2277–2286. doi:10.1109/TPWRD.2011.2142405.

    Article  Google Scholar 

  • Dadash Zadeh, M., & Zhang, Z. (2013). A new dft-based current phasor estimation for numerical protective relaying. IEEE Transactions on Power Delivery, 28(4), 2172–2179. doi:10.1109/TPWRD.2013.2266513.

    Article  Google Scholar 

  • Donohue, P., & Islam, S. (2009). The effect of non-sinusoidal current waveforms on electro-mechanical and solid state overcurrent relay operation. In: Industry applications society annual meeting, 2009. IAS 2009. IEEE, pp. 1–6. doi:10.1109/IAS.2009.5324811.

  • Filho, R. F. D., Neves, F. A. S., Souza, H. E. P., Azevedo, G. M. S., & Batista, Y. N. (2015). An adaptive phasor estimation algorithm for numerical protective relays based on the generalized delayed signal cancelation method. Journal of Control, Automation and Electrical Systems. doi:10.1007/s40313-015-0222-2.

  • Golestan, S., Monfared, M., Freijedo, F., & Guerrero, J. (2014). Performance improvement of a prefiltered synchronous-reference-frame pll by using a pid-type loop filter. IEEE Transactions on Industrial Electronics, 61(7), 3469–3479. doi:10.1109/TIE.2013.2282607.

    Article  Google Scholar 

  • Heng-xu, H., Lei, Z., & Zhi-qian, B. (2010). Improved method for the fitting of excitation curve for voltage transformer. In: Power and energy engineering conference (APPEEC), 2010 Asia-Pacific, pp. 1–5. doi:10.1109/APPEEC.2010.5449330.

  • Iba, K. (1994). Reactive power optimization by genetic algorithm. IEEE Transactions on Power Systems, 9(2), 685–692. doi:10.1109/59.317674.

    Article  Google Scholar 

  • Liu, H., Davidson, R., & Apanasovich, T. (2007). Statistical forecasting of electric power restoration times in hurricanes and ice storms. IEEE Transactions on Power Systems, 22(4), 2270–2279. doi:10.1109/TPWRS.2007.907587.

  • Miller, E. (2002). ”Smart” curve fitting. IEEE Potentials, 21(1), 20–23. doi:10.1109/45.985323.

  • Moré, J. J. (1978). Numerical analysis: Proceedings of the biennial conference held at dundee, June 28–July 1, 1977, Springer Berlin Heidelberg, Berlin, Heidelberg, chap The Levenberg-Marquardt algorithm: Implementation and theory, pp. 105–116. doi:10.1007/BFb0067700.

  • Neves, F. A. S., Cavalcanti, M. C., de Souza, H. E. P., Bradaschia, F., Bueno, E. J., & Rizo, M. (2010). A generalized delayed signal cancellation method for detecting fundamental-frequency positive-sequence three-phase signals. IEEE Transactions on Power Delivery, 25(3), 1816–1825. doi:10.1109/TPWRD.2010.2044196.

    Article  Google Scholar 

  • Saleh, S., Scaplen, B., & Rahman, M. (2011). A new implementation method of wavelet-packet-transform differential protection for power transformers. IEEE Transactions on Industry Applications, 47(2), 1003–1012. doi:10.1109/TIA.2010.2103545.

    Article  Google Scholar 

  • Santoso, S., Powers, E., Grady, W., & Hofmann, P. (1996). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 11(2), 924–930. doi:10.1109/61.489353.

    Article  Google Scholar 

  • Sham, M., & Vittal, K. (2011). Development of dsp based high speed numerical distance relay and its evaluation using hardware in loop power system simulator. In: Innovative smart grid technologies—India (ISGT India), 2011 IEEE PES, pp. 37–42. doi:10.1109/ISET-India.2011.6145351.

  • Tripathy, M., Maheshwari, R., & Verma, H. (2010). Power transformer differential protection based on optimal probabilistic neural network. IEEE Transactions on Power Delivery, 25(1), 102–112. doi:10.1109/TPWRD.2009.2028800.

    Article  Google Scholar 

  • Wang, H., Ge, Y., Liu, Z., Liu, H., & Xu, L. (2010). One curve-fit method for the evaluation of the total distortion of sinusoidal signal. In: 2010 IEEE international conference on information and automation (ICIA), pp. 1076–1081. doi:10.1109/ICINFA.2010.5512162.

  • Zhang, F., Geng, Z., & Yuan, W. (2001). The algorithm of interpolating windowed FFT for harmonic analysis of electric power system. IEEE Transactions on Power Delivery, 16(2), 160–164. doi:10.1109/61.915476.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Cientifico e Tecnologico—CNPq and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior—CAPES, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ygo N. Batista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, Y.N., de Souza, H.E.P., Neves, F.A.S. et al. Mathematical Modeling of Electrical Grid Current and Voltage Waveforms for Protective Relay Tests Under Actual Faulty Grid Conditions. J Control Autom Electr Syst 27, 680–688 (2016). https://doi.org/10.1007/s40313-016-0259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0259-x

Keywords

Navigation