Skip to main content
Log in

Hybrid Methods for Fast Detection and Characterization of Power Quality Disturbances

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, recently developed variants of wavelet transform, namely the maximum overlapping discrete wavelet transform and the second-generation wavelet transform, are used for detection of ten types of the power quality (PQ) disturbance signals. Further, the features of PQ signal disturbances are extracted using these wavelet transforms. Those extracted features are then used to classify various PQ disturbances. Random forest (RF) classifier is presented in this paper. The RF is constructed with multiple trees for classification of large number of classes simultaneously. In order to represent realistic situation, the proposed technique is tested with noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Galil, T., El-Saadany, E., Youssef, A., & Salama, M. (2005). Disturbance classification using hidden markov models and vector quantization. IEEE Transactions on Power Delivery, 20(3), 2129–2135.

    Article  Google Scholar 

  • Angrisani, L., D’aponte, P., & Testa, A. (1998). A measurement method based on the wavelet transform for power quality analysis. IEEE Transactions on Power Delivery, 13(4), 990–998.

    Article  Google Scholar 

  • Biswal, B., Biswal, M., Mishra, S., & Jalaja, R. (2014). Automatic classification of power quality events using balanced neural tree. IEEE Transactions on Industrial Electronics, 61(1), 521–530.

    Article  Google Scholar 

  • Biswal, M., & Dash, P. K. (2013). Measurement and classification of simultaneous power signal patterns with an s-transform variant and fuzzy decision tree. IEEE Transactions on Industrial Informatics, 9(4), 1819–1827.

    Article  MathSciNet  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  MATH  Google Scholar 

  • Brown, R. A., & Frayne, R. (2008). A fast discrete s-transform for biomedical signal processing, In Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE (pp. 2586–2589), IEEE.

  • Chilukuri, M., Dash, P., & Basu, K. (2004). Time-frequency based pattern recognition technique for detection and classification of power quality disturbances, In TENCON 2004. 2004 IEEE region 10 conference (Vol. 100, pp. 260–263), IEEE.

  • Cutler, D. R., Edwards, T. C, Jr, Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., et al. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.

    Article  Google Scholar 

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on pure and applied mathematics, 41(7), 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier analysis and applications, 4(3), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghani, H., Vahidi, B., Naghizadeh, R., & Hosseinian, S. (2013). Power quality disturbance classification using a statistical and wavelet-based hidden markov model with dempster-shafer algorithm. International Journal of Electrical Power and Energy Systems, 47, 368–377.

    Article  Google Scholar 

  • Douglas, J. (1993). Solving problems of power quality, EPRI Journal (Electric Power Research Institute);(United States), 18(8).

  • Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26), 429–441.

    Google Scholar 

  • Gaouda, A., Salama, M., Sultan, M., & Chikhani, A. (1999). Power quality detection and classification using wavelet-multiresolution signal decomposition. IEEE Transactions on Power Delivery, 14(4), 1469–1476.

    Article  Google Scholar 

  • Ghosh, A. K., & Lubkeman, D. L. (1995). The classification of power system disturbance waveforms using a neural network approach. IEEE Transactions on Power Delivery, 10(1), 109–115.

    Article  Google Scholar 

  • Gu, Y. H., & Bollen, M. H. (2000). Time-frequency and time-scale domain analysis of voltage disturbances. IEEE Transactions on Power Delivery, 15(4), 1279–1284.

    Article  Google Scholar 

  • Hafez, A. G., & Ghamry, E. (2013). Geomagnetic sudden commencement automatic detection via modwt. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1547–1554.

    Article  Google Scholar 

  • Hasheminejad, S., Esmaeili, S., & Jazebi, S. (2012). Power quality disturbance classification using s-transform and hidden markov model. Electric Power Components and Systems, 40(10), 1160–1182.

    Article  Google Scholar 

  • Kohavi, R., & Quinlan, J. R. (2002). Data mining tasks and methods: Classification: Decision-tree discovery. In W. Klösgen & J. M. Zytkow (Eds.), Handbook of data mining and knowledge discovery (pp. 267–276). New York, NY: Oxford University Press, Inc.

  • Kumar, A., Joshi, L. K., Pal, A., & Shukla, A. (2011). MODWT based time scale decomposition analysis of BSE and NSE indexes financial time series. International Journal of Mathematical Analysis, 5(27), 1343–1352.

    MathSciNet  MATH  Google Scholar 

  • Lee, C.-Y., & Shen, Y.-X. (2011). Optimal feature selection for power-quality disturbances classification. IEEE Transactions on Power Delivery, 26(4), 2342–2351.

    Article  Google Scholar 

  • Manjunath, A., & Ravikumar, H. (2010). Comparison of discrete wavelet transform (dwt), lifting wavelet transform (lwt) stationary wavelet transform (swt) and s-transform in power quality analysis. European Journal of Scientific Research, 39, 569–576.

    Google Scholar 

  • Masoum, M., Jamali, S., & Ghaffarzadeh, N. (2010). Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks. IET Science, Measurement and Technology, 4(4), 193–205.

    Article  Google Scholar 

  • Mishra, S., Bhende, C., & Panigrahi, B. (2008). Detection and classification of power quality disturbances using s-transform and probabilistic neural network. IEEE Transactions on Power Delivery, 23(1), 280–287.

    Article  Google Scholar 

  • Mwitondi, K. S. (2013). Data mining with Rattle and R. Journal of Applied Statistics, 40(2), 464–464.

    Article  Google Scholar 

  • Panigrahi, B., & Pandi, V. R. (2009). Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest neighbour algorithm. IET Generation, Transmission and Distribution, 3(3), 296–306.

    Article  Google Scholar 

  • Percival, D. B., & Walden, A. T. (2006). Wavelet methods for time series analysis (Vol. 4). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Polikar, R. (2006). The engineers ultimate guide to wavelet analysis. College of Engineering retrieved, Rowan University.

  • Poona, N., & Ismail, R. (2014). Using boruta-selected spectroscopic wavebands for the asymptomatic detection of fusarium circinatum stress. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9), 3764–3772.

  • Reaz, M. B. I., Choong, F., Sulaiman, M. S., Mohd-Yasin, F., & Kamada, M. (2007). Expert system for power quality disturbance classifier. IEEE Transactions on Power Delivery, 22(3), 1979–1988.

    Article  Google Scholar 

  • Samantaray, S., Kamwa, I., & Joos, G. (2010). Ensemble decision trees for phasor measurement unit-based wide-area security assessment in the operations time frame. Generation, Transmission and Distribution, IET, 4(12), 1334–1348.

  • Santoso, S., Powers, E. J., & Grady, W. (1997). Power quality disturbance data compression using wavelet transform methods. IEEE Transactions on Power Delivery, 12(3), 1250–1257.

  • Upadhyaya, S., & Mohanty, S. (2013). Power quality disturbance detection using wavelet based signal processing. In India conference (INDICON), 2013 annual IEEE (pp. 1–6), IEEE.

  • Yilmaz, A. S., Subasi, A., Bayrak, M., Karsli, V. M., & Ercelebi, E. (2007). Application of lifting based wavelet transforms to characterize power quality events. Energy conversion and management, 48(1), 112–123.

    Article  Google Scholar 

  • Zafar, T., & Morsi, W. (2013). Power quality and the un-decimated wavelet transform: An analytic approach for time-varying disturbances. Electric Power Systems Research, 96, 201–210.

    Article  Google Scholar 

  • Zhang, H., Liu, P., & Malik, O. (2003). Detection and classification of power quality disturbances in noisy conditions, In Generation, transmission and distribution, IEE proceedings- (Vol. 150, pp. 567–572), IET.

  • Zhao, F., & Yang, R. (2007). Power-quality disturbance recognition using s-transform. IEEE Transactions on Power Delivery, 22(2), 944–950.

    Article  Google Scholar 

  • Zhu, T., Tso, S., & Lo, K. (2004). Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition. IEEE Transactions on Power Delivery, 19(4), 1928–1935.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Upadhyaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyaya, S., Mohanty, S. & Bhende, C.N. Hybrid Methods for Fast Detection and Characterization of Power Quality Disturbances. J Control Autom Electr Syst 26, 556–566 (2015). https://doi.org/10.1007/s40313-015-0204-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0204-4

Keywords

Navigation