Skip to main content
Log in

Fuzzy Control Embedded in Microcontroller and Applied to an Experimental Apparatus Using Magnetorheological Fluid Damper

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work focuses on applying fuzzy control embedded in microcontrollers in an experimental apparatus using magnetorheological fluid damper. The non-linear behavior of the magnetorheological dampers associated with the parametric variations on vehicle suspension models corroborate the use of the fuzzy controllers. The fundamental formulation of this controller is discussed and its performance is shown through numeric simulations. An experimental apparatus representing a two degree of freedom system containing a magnetorheological damper is used to identify the main parameters and to evaluate the performance of the closed-loop system with the embedded low-cost microcontroller-based fuzzy controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Abreu, G. L. C. M. (2003). Controle robusto \(H_{\infty }\) aplicado no controle de vibrações em estruturas flexíveis com materiais piezelétricos incorporados. Tese de doutorado, Universidade Federal de Uberlândia, Uberlândia-MG.

  • Anderson, B. D. O., & Moore, J. B. (1989). Optimal control: Linear quadratic methods. Englewood Cliffs: Prentice Hall International.

    Google Scholar 

  • Chiou, J. S., & Liu, M. T. (2009). Using fuzzy logic controller and evolutionary genetic algorithm for automotive active suspension system. International Journal of Automotive Technology, 10(6), 703–710.

    Article  Google Scholar 

  • Craft, M. J. (2003). Design optimization of magnetorheological shock absorbers and development of fuzzy logic control algorithms for semi-active vehicle suspensions. Tese de doutorado, Graduate Faculty of North Carolina State University.

  • Crivellaro, C. (2008). Controle robusto de suspensão semi-ativa para caminhonetes utilizando amortecedores magneto-reológicos. Tese de doutorado, USP-São Paulo.

  • Crosby, M., & Karnopp, D. (1973). The active damper : A new concept for shock and vibration control, Shock Vibration Bulletin. Washington, DC.

  • Dong, X., Yu, M., Liao, C., & Chen, W. (2010). Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dynamics, 59(3), 433–453.

    Article  MATH  Google Scholar 

  • Driankov, D., Hellendoorn, H., & Reinfrank, M. (1996). An introduction to fuzzy control (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Dyke, S. J. (1996). Acceleration feedback control strategies for active and semi-active control systems: Modeling, algorithm development, and experimental verification. Tese de doutorado, University of Notre Dame.

  • Dyke, S. J., Spencer, B. F., Sain, M. K., & Carlson, J. D. (1996). Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures, 5, 565–575.

    Article  Google Scholar 

  • Klinger, D. L., Cooperrider, N. K., Hedrick, J. K., White, R. C., Cilzado, A., Sayers, M., & Wormley, D. (1976). Guideway vehicle cost reduction, parts i and ii, National Technical Information Service Reports DT-TST, pp. 75–95.

  • Ko, J. M., Ni, Y. Q., Chen, Z. Q., & Spencer, B. F. (2003). Implementation of MR dampers to dongting lake bridge for cable vibration mitigation. World Conference on Structural Control, 3 767–775.

    Google Scholar 

  • Lauwerys, C., Swevers, J. & Sas, P. (2002). Linear control of car suspension using nonlinear actuator control. Proceedings do ISMA2002. Leuven-Belgium.

  • Lewis, F., & Syrmos, V. L. (1995). Optimal control. New York: Wiley.

    Google Scholar 

  • Li, R., Chen, W. M., Yu, M., & Liu, D. K. (2004). Fuzzy intelligent control of automotive vibration via magneto-rheological damper. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore (pp. 503–507).

  • Li, Z., Yang, Y., Gong, X., Lin, Y., & Liu, G. (2008). Fuzzy control of the semi-active suspension with MR damper based on \(\mu \)GA. IEEE Vehicle Power and Propulsion Conference, Setembro, Harbin, China.

  • Lima, A. M. G. (2003). Modelagem numérica e avaliação experimental de materiais viscoelasticos aplicados ao controle passivo de vibrações mecânicas. Dissertação de mestrado, Universidade Federal de Uberlândia, Uberlândia-MG.

  • Margolis, D., & Hrovat, D. (1976). Semi-active heavy and pitch control of a high seed tracked air cushion vehicle. Intersociety Transportation Conference, Los Angeles-CA.

  • Miller, L., & Nobles, C. (1988). The design and development of a semi-active suspension for military tank, SAE Paper (881133).

  • Nguyen, L. H., Park, S., Turnip, A., & Hong, K. S. (2009). Application of LQR control theory to the design of modified skyhook control gains for semi-active suspension systems. ICROS-SICE International Joint Conference, Japan (pp. 4698–4703).

  • Picado, R. M. (1998). Controle semi-ativo em suspensões automotivas. Dissertação de mestrado, Universidade Estadual de Campinas, UNICAMP.

  • Rainbow, J. (1948). The magnetic fluid clutch. AIEE Transactions, 67, 1308–1315.

    Google Scholar 

  • Rao, M. V. C., & Prahlad, V. (1997). A tunable fuzzy logic controller for vehicle-active suspension systems. Fuzzy Sets and Systems, 85, 11–21.

    Article  Google Scholar 

  • Rashid, M. M., Rahim, N. A., Hussain, M. A., & Rahman, M. A. (2011). Analysis and experimental study of magnetorheological-based damper for semi-active suspension system using fuzzy hybrids. IEEE Transaction on Industry Applications, 47(2), 1051–1059.

    Article  Google Scholar 

  • Spencer, B. F., Dyke, S. J., & Sain, M. K. (1996). Phenomenological model of a magneto-rheological damper. Journal of Engineering Mechanics, 122(3), 230–238.

    Google Scholar 

  • Stone, R., & Ball, J. K. (2004). Automotive engineering fundamentals. Warrendale, PA: SAE International.

    Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15, 116–132.

    Article  MATH  Google Scholar 

  • Tsoukalas, L., & Uhrig, R. (1996). Fuzzy and neural approach in engineering. New York: Wiley.

    Google Scholar 

  • Tusset, A. M. (2008). Controle Ótimo aplicado em modelo de suspensão veicular não-linear controlada através de amortecedor magneto-reológico. Tese de doutorado, Universidade Federal do Rio Grande do Sul, UFRGS.

  • Tyan, F. (2008). \(H_{\infty }\)-\(PD\) controller for suspension systems with MR dampers. Proceedings of the 47th IEEE Conference on Decision and Control (pp. 4408–4413).

  • Winslow, W. M. (1947). Method and means for translating electrical impulses into mechanical force, US Patent (2417850).

  • Yoshioka, H., Ramallo, J. C., & Jr Spencer, B. F. (2002). Smart base isolation strategies employing magneto-rheological dampers. Journal of Engineering Mechanics, 128, 540–551.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is grateful to FAPESP (Process 2008/05129-3) for the financial aid granted. The authors also acknowledge the support given by CNPq and FAPEMIG through INCT-EIE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Luiz C. M. de Abreu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Abreu, G.L.C.M., de Melo, G.P. & Lopes, V. Fuzzy Control Embedded in Microcontroller and Applied to an Experimental Apparatus Using Magnetorheological Fluid Damper. J Control Autom Electr Syst 24, 54–69 (2013). https://doi.org/10.1007/s40313-013-0012-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0012-7

Keywords

Navigation