Skip to main content
Log in

A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work proposes an original approach based on subsumption architecture to build dynamic cognitive networks (DCN). Dynamic cognitive network is a soft computing technique similar to fuzzy cognitive maps (FCM) which are able to easily model cause–effect behaviors. FCMs have been applied in several areas of knowledge; however, they present some restrictions for modeling dynamic systems, specifically temporal dependencies among events. Due to these restrictions, alternative approaches based on FCM and also fuzzy networks have appeared in the literature. Dynamic cognitive networks are one of these techniques. Hence, this study presents a new type of DCN which incorporates different types of concepts and causal relations able to circumvent the main drawbacks of FCM modeling. The new approach is based on the subsumption architecture, which allows to represent, model, and implement several behaviors of a dynamic systems through a composition of hierarchical DCNs. An application of the new DCN technique in autonomous navigation is also developed in order to validate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andreou, A. S., Mateou, N. H., & Zombanakis, G. A. (2005). Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Computing, 9, 194–210.

    Google Scholar 

  • Axelrod, R. M. (1976). Structure of decision: The cognitive maps of political elites. Princeton: Princeton University Press.

  • Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. Cambridge: MIT Press.

    Google Scholar 

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2, 10.

    Article  Google Scholar 

  • Carvalho, J., Tome, J. (2001). Rule based fuzzy cognitive maps-qualitative systems dynamics. 10th IEEE International Conference Fuzzy Systems, IEEE Press, pp. 280–283.

  • Dickerson, J. A., & Kosko, B. (1994). Virtual Worlds as Fuzzy Cognitive Maps. Presence, 3(2), 73–89.

    Google Scholar 

  • Diniz, M. E., & Lins, M. P. (2012). Percepção e estruturação de problemas sociais utilizando mapas cognitivos. Produção, 22(1), 142–154.

    Article  Google Scholar 

  • Driankov, D., & Saffiotti, A. (2001). Fuzzy logic techniques for autonomous vehicle navigation. Heidelberg: Physica.

    Book  Google Scholar 

  • Glykas, M. (2010). Fuzzy cognitive maps: Advances in theory, methodologies, tools and applications (1st edn.). Springer Publishing Company, Incorporated.

  • Goerick, C. (2011). Towards an understanding of hierarchical architectures. IEEE Transactions on Autonomous Mental Development, 3(1), 54–63.

    Article  Google Scholar 

  • Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24, 65–75.

    Article  MATH  Google Scholar 

  • Kottas, T. L., Boutalis, Y. S., & Christodoulou, M. A. (2007). Fuzzy cognitive network: A general framework. Intelligent Decision Technologies, 1(4), 183–196.

    Google Scholar 

  • Koulouriotis, D. E., Diakoulakis, I. E., Emiris, D. M., & Zopounidis, C. D. (2005). Development of dynamic cognitive networks as complex systems approximators: Validation in financial time series. Applied Soft Computing, 5(2), 157–179.

    Article  Google Scholar 

  • Mendonça, M., Angelico, B. A., Arruda, L. V. R., Neves-Jr., F. (2011). Arquitetura de subsunção baseada em redes cognitivas dinâmicas com aplicação em navegação robotica. Anais do X Simpósio Brasileiro de Automação Inteligente (CD-ROM) pp. 1–6.

  • Mendonça, M., Arruda, L., & Neves-Jr, F. (2011). Redes dinâmicas cognitivas aplicadas no controle supervisório de um fermentador. Sba Controle Et Automação, 22(4), 345–362.

    Google Scholar 

  • Mendonça, M., Arruda, L., & Neves-Jr, F. (2012). Autonomous navigation system using event driven-fuzzy cognitive maps. Applied Intelligence, 37(2), 175–188.

    Article  Google Scholar 

  • Miao, Y., Liu, Z., Siew, C., & Miao, C. (2001). Dynamical cognitive network - an extension of fuzzy cognitive. IEEE Transactions on Fuzzy Systems, 9(5), 760–770.

    Article  Google Scholar 

  • Miao, Y., Miao, C., Tao, X., Shen, Z., & Liu, Z. (2010). Transformation of cognitive maps. IEEE Transactions on Fuzzy Systems, 18(1), 114–124.

    Article  Google Scholar 

  • Monteiro, S. T., & Ribeiro, C. H. (2004). Desempenho de algoritmos de aprendizagem por reforço sob condições de ambiguidade sensorial em robótica móvel. Sba Controle Et Automação, 15(3), 320–338.

    Article  Google Scholar 

  • Neves-Jr., F., Arruda, L., Mendonça, M. , (2009). A combined fcm-ga approach to supervise industrial process. In T. Escobet, V. Puig, & B. Morcego (Eds.), 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Vol. 1, pp. 1144–1149)., IFAC Spain: Barcelona.

  • Papageorgiou, E. I. (2012). Learning algorithms for fuzzy cognitive maps: A review study. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(2), 150–163.

    Google Scholar 

  • Papageorgiou, E., Stylios, C., & Groumpos, P. (2003). An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps. IEEE Transactions on Biomedical Engineering, 50(12), 1326–1339.

    Article  Google Scholar 

  • Pedrycz, W. (2010). The design of cognitive maps: A study in synergy of granular computing and evolutionary optimization. Expert Systems with Applications, 37, 7288–7294.

    Article  Google Scholar 

  • Rieg, D. L., & de Araujo, Filho T. (2003). Mapas cognitivos como ferramenta de estruturação e resolução de problemas: o caso da pró-reitoria de extensão da ufscar. Gestão e Produção, 10(2), 145–162.

    Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (adaptive computation and machine learning). Cambridge: The MIT Press.

    Google Scholar 

  • Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10, 115–152.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of the Brazilian Petroleum Agency (ANP) and the Research and Projects Financing Agency (FINEP) through Grant PRH-ANP / MCT:PRH10-UTFPR; and Brazilian Research Council (CNPq) through Grants 304037/2010-9 and 311877/2009-5 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia Valéria Ramos de Arruda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonça, M., Angélico, B.A., de Arruda, L.V.R. et al. A Subsumption Architecture to Develop Dynamic Cognitive Network-Based Models With Autonomous Navigation Application. J Control Autom Electr Syst 24, 117–128 (2013). https://doi.org/10.1007/s40313-013-0008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0008-3

Keywords

Navigation