Skip to main content
Log in

Proposal of a SSVEP-BCI to Command a Robotic Wheelchair

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This study proposes a Brain–Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP). This BCI can discriminate one out of four classes, once a second. Using such BCI, nine healthy volunteers were able to use the four classes with an average precision of 83 \(\pm \) 15 %. Moreover, three of such volunteers were selected to guide a robotic wheelchair through an indoor environment using such BCI, and the result is that all of them were able to accomplish the proposed task. For that, four flickering visual stimuli were used and each one was associated to one of the BCI classes. Once a stimulus was observed, a command associated to it was identified and translated to a visual feedback or to a wheelchair command. The electroencephalogram signal of the volunteers was acquired and processed according to a feature extraction and a classification steps, leading to the identification of the stimulus the user gazed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Daly, D. D., & Pedley, T. A. (Eds.). (1990). Current practice of clinical electroencephalography (2nd ed.). New York: Raven Press Ltd.

    Google Scholar 

  • de Sá, A. M. F. L. M., Thiengo, H. C., Antunes, I. S., & Simpson, D. M. (2009). Assessing time- and phase-locked changes in the eeg during sensory stimulation by means of spectral techniques. IFMBE Proceedings, 2009(25), 2136–2139.

    Article  Google Scholar 

  • Diez, P. F., Mut, V. A., Perona, E. M. A., & Leber, E. L. (2011). Asynchronous BCI control using high-frequency SSVEP. Journal of Neuroengineering and Rehabilitation, 8, 39.

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Ebrahimi, T., Vesin, J.-M., & Garcia, G. (2003). Brain computer interfaces in multimedia communication. IEEE Signal Processing Magazine, 20, 14–24.

    Article  Google Scholar 

  • Friman, O., Lüsth, T., Volosyak, I. & Gräser, A. (2007). Spelling with steady state visual evoked potentials, Proceedings of the 3rd International IEEE EMBS Conference on Neural, Engineering (pp. 354–357).

  • Friman, O., Volosyak, I., & Gräser, A. (2007). Multiple channel detection of steady state visual evoked potentials for brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 54(4), 742–750.

    Article  Google Scholar 

  • Galán, F., Nuttin, M., Lew, E., Ferrez, P. W., Vanacker, G., Philips, J., et al. (2008). A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clinical Neurophysiology, 119, 2159–2169.

    Google Scholar 

  • Garcia, F. D., Bastos-Filho, T. F., & Salles, & E. O. T. (2009). Desenvolvimento de um sistema em FPGA para implementaÇão de um gerador de estímulos visuais por padrão reverso. Proceedings of IX Simpósio Brasileiro de Automação Inteligente.

  • Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., et al. (2009). How many people are able to control a P300-based brain-computer interface ( BCI)? Neuroscience Letters, 462, 94–98.

    Article  Google Scholar 

  • Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., & Pfurtscheller, G. (2003). How many people are able to operate an EEG-based brain-computer interface ( BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 145–147.

    Article  Google Scholar 

  • Karim, A. A., Hinterberger, T., Richter, J., Mellinger, J., Neumann, N., Flor, H., et al. (2006). Web surfing with brain potentials for the completely paralyzed. Neurorehabilitation and Neural Repair, 20(4), 508–515.

    Article  Google Scholar 

  • Lalor, E. C., Kelly, S. P., Finucane, C., Burke, R., Smith, R., Reilly, R. B., et al. (2005). Steady-state VEP-based brain-computer interface control in an immersive 3 D gaming environment. EURASIP Journal on Applied Signal Processing, 19, 3156–3164.

    Google Scholar 

  • Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., & Pfurtscheller, G. (2007). Brain computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(4), 473–482.

    Article  Google Scholar 

  • Mandel, C., Luth, T., Laue, T., Rofer, T., Gräser, A. & Krieg-Brückner, B. (2009). Navigating a smart wheelchair with a brain-computer interface interpreting steady-state visual evoked potentials, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1118–1125).

  • Martinez, P., Bakardjan, H. & Cichocki, A. (2007). Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm, Computational intelligence and neuroscience.

  • Millán, J. R., Galán, F., Vanhooydonck, D., Lew, E., Philips, J. & Nuttin, M. (2009). Asynchronous non-invasive brain-actuated control of an intelliget wheelchair, Proceedings of 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3361–3364).

  • Millán, J. R., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliema, C., Tangermann, M., et al. (2010). Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Frontiers in Neuroscience, 4, 161.

    Google Scholar 

  • Ming, C., & Shangkai, G. (1999). An EEG-based cursor control system. Proceedings of The First Joint BMES/EMBS Conference, 1, 699.

    Google Scholar 

  • Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., & Rupp, R. (2005). EEG-based neuroprosthesis control: a step towards clinical practice. Neuroscience Letters, 382, 169–174.

    Article  Google Scholar 

  • Müller, S. M. T., Bastos-Filho, T. F. & Sarcinelli-Filho, M. (2010). Incremental SSVEP analysis for BCI implementation, Proceedings of 32nd Annual International Conference of the IEEE EMBS (pp. 3333–3336).

  • Müller, S. M. T., Bastos-Filho, T. F. & Sarcinelli-Filho, M. (2011). Implementação de uma ICC- SSVEP para o comando de uma cadeira de rodas robótica, Proceedings of X Simpósio Brasileiro de Automação Inteligente p.

  • Müller, S. M. T., Celeste, W. C., Bastos-Filho, T. F., & Sarcinelli-Filho, M. (2010). Proposal of a brain-computer interface based on visual evoked potentials to command an autonomous robotic wheelchair. Journal of Medical and Biological Engineering, 30(6), 407–416.

    Article  Google Scholar 

  • Nijholt, A., Tan, D., Allison, B., Millán, J. R., Jackson, M. M., & Graimann, B. (2008). Brain-computer interfaces for HCI and games. Proceedings ACM CHI, 2008, 3925–3928.

    Google Scholar 

  • Obermaier, B., Muller, G. R., & Pfurtscheller, G. (2003). Virtual keyboard controlled by spontaneous EEG activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(4), 422–426.

    Article  Google Scholar 

  • Perego, P., Turconi, A. C., Andreoni, G., Maggi, L., Beretta, E., Parini, S., et al. (2011). Cognitive ability assessment by brain-computer interface validation of a new assessment method for cognitive abilities. Journal of Neuroscience Methods, 201, 239–250.

    Article  Google Scholar 

  • Trejo, L. J., Rosipal, R., & Matthews, B. (2006). Brain-computer interfaces for 1-D and 2-D cursor control: Designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 225–229.

    Google Scholar 

  • Vialatte, F.-B., Maurice, M., Dauwels, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Progress in Neurobiology, 90, 418–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Mara Torres Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S.M.T., Bastos, T.F. & Filho, M.S. Proposal of a SSVEP-BCI to Command a Robotic Wheelchair. J Control Autom Electr Syst 24, 97–105 (2013). https://doi.org/10.1007/s40313-013-0002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0002-9

Keywords

Navigation