Skip to main content
Log in

Direct 3-D Tracking for Central Omnidirectional Cameras Under General Lighting Variations

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This article considers the fundamental task of 3-D tracking as a direct image registration problem. 3-D tracking consists in continuously recovering the camera motion in the Euclidean space. Direct methods refer to those that exploit the pixel intensities without intermediate steps, e.g., no extraction of image features. This work presents new photogeometric transformation models and nonlinear optimization methods for directly registering calibrated central omnidirectional images of planar objects. The proposed approach simultaneously reconstructs the camera motion, the planar structure, and the illumination variations so as to perform the tracking. Experimental results show that 3-D tracking can indeed be highly robust and accurate even for this type of vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. See http://www.youtube.com/watch?v=Aqm_bKXcZlw.

  2. See http://www.youtube.com/watch?v=rBtXFcLtigI.

References

  • Baker, S., & Nayar, K. (1999). A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision, 35(2), 1–22.

    Article  Google Scholar 

  • Barreto, J., & Araujo, H. (2001). Issues on the geometry of central catadioptric image formation. Proceedings of the IEEE Computer Vision and, Pattern Recognition, pp. 422–427.

  • Brown, L. G. (1992). A survey of image registration techniques. ACM Computing Surveys, 24, 325–376.

    Article  Google Scholar 

  • Gasparini, S., Sturm, P., & Barreto, J. (2009). Plane-based calibration of central catadioptric cameras. Proceedings of the International Conference on Computer Vision.

  • Geyer, C., & Daniilidis, K. (2000). A unifying theory for central panoramic systems and practical applications. Proceedings of the European Conference on Computer Vision, pp. 445–461.

  • Hadj-Abdelkader, H., Mezouar, Y., Andreff, N., & Martinet, P. (2005). 2 1/2 D visual servoing with central catadioptric cameras. Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems.

  • Horst, R., & Pardalos, P. M. (1995). Handbook of global optimization. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Huber, P. J., & Huber, P. J. (1981). Robust statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Leivas, G., Nascimento, E., & Campos, M. (2011). Visual odometry based on omnidirectional images. São João Del Rei/MG, Proceedings of the Simpósio Brasileiro de Automação Inteligente. Brazil

  • Maintz, J. B., & Viergever, M. A. (1998). A survey of medical image registration. Medical Image Analysis, 2(1), 1–36.

    Article  Google Scholar 

  • Mei, C., Benhimane, S., Malis, E., & Rives, P. (2008). Efficient homography-based tracking and 3-D reconstruction for single-viewpoint sensors. IEEE Transactions on Robotics, 24(6), 1352–1364.

    Google Scholar 

  • Mei, C., & Rives, P. (2007). Single view point omnidirectional camera calibration from planar grids. Proceedings of the IEEE International Conference on Robotics and Automation.

  • Okamoto-Jr. J., & Guizilini, V. C. (2010). On-line SLAM using clustered landmarks with omnidirectional vision. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(5), 468–476.

    Google Scholar 

  • Salazar-Garibay, A., Malis, E., & Mei, C. (2009). Visual tracking of planes with an uncalibrated central catadioptric camera. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2999–3004.

  • Silveira, G. (2011). Rastreamento visual direto fotogeométrico para câmeras omnidirecionais centrais. São João Del Rei/MG, Proc. of the Simpósio Brasileiro de Automação Inteligente. Brazil

  • Silveira, G., & Malis, E. (2010). Unified direct visual tracking of rigid and deformable surfaces under generic illumination changes in grayscale and color images. International Journal of Computer Vision, 89(1), 84–105.

    Article  Google Scholar 

  • Silveira, G., Malis, E., & Rives, P. (2006). Visual servoing over unknown, unstructured, large-scale scenes. IEEE International Conference on Robotics and Automation, pp. 4142–4147.

  • Silveira, G., Malis, E., & Rives, P. (2008). An efficient direct approach to visual SLAM. IEEE Transactions on Robotics, 24(5), 969–979.

    Article  Google Scholar 

  • Varadarajan, V. (1974). Lie groups, Lie algebras, and their representations. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Vassallo, R. F., Encarnação, L. F., Santos-Victor, J., & Schneebeli, H. J. (2004). Bird’s eye view remapping and path following based on omnidirectional vision. Proceedings of the Congresso Brasileiro de Automática.

  • Warner, F. W. (1987). Foundations of differential manifolds and Lie groups. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo Silveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, G. Direct 3-D Tracking for Central Omnidirectional Cameras Under General Lighting Variations. J Control Autom Electr Syst 24, 129–138 (2013). https://doi.org/10.1007/s40313-013-0001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0001-x

Keywords

Navigation