Skip to main content

Discrete Fourier-Jacobi Transform and Generalized Lipschitz Classes


In this paper, we use the methods of Fourier-Jacobi harmonic analysis to generalize Boas-type results. We give necessary and sufficient conditions in terms of the Fourier-Jacobi coefficients of a function f in order to ensure that it belongs either to one of the generalized Lipschitz classes \({H}_{\alpha }^{m}\) and \({h}_{\alpha }^{m}\) for α > 0.

This is a preview of subscription content, access via your institution.

Data Availability

The manuscript has no associated data.


  1. Askey, R., Wainger, S.: A convolution structure for Jacobi series. Am. J. Math. 91, 463–485 (1969)

    MathSciNet  Article  Google Scholar 

  2. Boas, R.P. Jr.: Integrability Theorems for Trigonometric Transforms. Springer-Verlag, New York (1967)

    Book  Google Scholar 

  3. Erdélyi, A., Magnus, W., Oberttinger, F., Tricomi, F. G.: Higher Transcendental Functions, vol. II, Mc-Graw-Hill, New York-Toronto-London, 1953, Russian transl., Nauka, Moscow (1974)

  4. Moricz, F.: Absolutely convergent Fourier integrals and classical function spaces. Arch. Math. 91(1), 49–62 (2008)

    MathSciNet  Article  Google Scholar 

  5. Moricz, F.: Absolutely convergent Fourier series and function classes. J. Math. Anal. Appl. 324(2), 1168–1177 (2006)

    MathSciNet  Article  Google Scholar 

  6. Moricz, F.: Higher order Lipschitz classes of functions and absolutely convergent Fourier series. Acta Math. Hungar. 120(4), 355–366 (2008)

    MathSciNet  Article  Google Scholar 

  7. Moricz, F.: Absolutely convergent Fourier series, classical function spaces and Paley’s theorem. Anal. Math. 34(4), 261–276 (2008)

    MathSciNet  Article  Google Scholar 

  8. El Hamma, M., Daher, R.: Equivalence of K-functionalsand modulus of smoothness constructed by generalized Jacobi transform. Integral Transforms Spec. Funct. 30(12), 1018–1024 (2019)

    MathSciNet  Article  Google Scholar 

  9. Platonov, S.S.: Fourier–jacobi harmonic analysis and some problems of approximation of functions on the half-axis in l2 metric: Nikol’skii–besov type function spaces. Integral Transforms Spec Funct. 31(4), 281–298 (2020)

    MathSciNet  Article  Google Scholar 

  10. Platonov, S.S.: Fourier-jacobi harmonic analysis and approximation of functions Izvestiya. Mathematics 78(1), 106–153 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Szegö, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Publ., vol. 23, Am. Math. Soc., Providence, RI, 1959, Russian transl., Fizmatgiz, Moscow (1962)

  12. Elgargati, A., Loualid, E.M., Daher, R.: Generalization of Titchmarsh theorem in the deformed Hankel setting. Ann. Univ. Ferrara 67, 243–252 (2021).

    MathSciNet  Article  MATH  Google Scholar 

  13. Achak, A., Daher, R., Dhaouadi, L., et al.: An analog of Titchmarsh’s theorem for the q-Bessel transform. Ann. Univ. Ferrara 65, 1–13 (2019).

    MathSciNet  Article  MATH  Google Scholar 

  14. Volosivets, S.S.: Fourier transforms and generalized Lipschitz classes in uniform metric. J. Math. Anal. Appl. 383, 344–352 (2011)

    MathSciNet  Article  Google Scholar 

  15. Volosivets, S.S.: Multiple fourier coefficients and generalized Lipschitz classes in uniform metric. J. Math. Anal. Appl. (2015)

  16. Berkak, E.M., Loualid, E.M., Daher, R.: Boas-type theorems for the q-Bessel Fourier transform. Anal. Math. Phys. 11, 102 (2021)

    MathSciNet  Article  Google Scholar 

  17. Loualid, E.M., Elgargati, A., Daher, R.: Quaternion Fourier transform and generalized Lipschitz classes. Adv. Appl. Clifford Algebras 31(1), Paper No. 14 15 (2021)

  18. Loualid, E.M., Elgargati, A., Berkak, E.M., Daher, R.: Boas-type theorems for the Bessel transform. Rev. R. Acad. Cienc. Exactas fís. Nat. Ser. A Mat. RACSAM 115(3), Paper No. 141 12 pp (2021)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to El Mehdi Loualid.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loualid, E.M., Elgargati, A. & Daher, R. Discrete Fourier-Jacobi Transform and Generalized Lipschitz Classes. Acta Math Vietnam (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Discrete Fourier-Jacobi transform
  • Boas-type theorems
  • Generalized Lipschitz classes
  • Generalized Zygmund classes

Mathematics Subject Classification (2010)

  • 42B35
  • 42A38
  • 26A16
  • 42A16