Askey, R., Wainger, S.: A convolution structure for Jacobi series. Am. J. Math. 91, 463–485 (1969)
MathSciNet
Article
Google Scholar
Boas, R.P. Jr.: Integrability Theorems for Trigonometric Transforms. Springer-Verlag, New York (1967)
Book
Google Scholar
Erdélyi, A., Magnus, W., Oberttinger, F., Tricomi, F. G.: Higher Transcendental Functions, vol. II, Mc-Graw-Hill, New York-Toronto-London, 1953, Russian transl., Nauka, Moscow (1974)
Moricz, F.: Absolutely convergent Fourier integrals and classical function spaces. Arch. Math. 91(1), 49–62 (2008)
MathSciNet
Article
Google Scholar
Moricz, F.: Absolutely convergent Fourier series and function classes. J. Math. Anal. Appl. 324(2), 1168–1177 (2006)
MathSciNet
Article
Google Scholar
Moricz, F.: Higher order Lipschitz classes of functions and absolutely convergent Fourier series. Acta Math. Hungar. 120(4), 355–366 (2008)
MathSciNet
Article
Google Scholar
Moricz, F.: Absolutely convergent Fourier series, classical function spaces and Paley’s theorem. Anal. Math. 34(4), 261–276 (2008)
MathSciNet
Article
Google Scholar
El Hamma, M., Daher, R.: Equivalence of K-functionalsand modulus of smoothness constructed by generalized Jacobi transform. Integral Transforms Spec. Funct. 30(12), 1018–1024 (2019)
MathSciNet
Article
Google Scholar
Platonov, S.S.: Fourier–jacobi harmonic analysis and some problems of approximation of functions on the half-axis in l2 metric: Nikol’skii–besov type function spaces. Integral Transforms Spec Funct. 31(4), 281–298 (2020)
MathSciNet
Article
Google Scholar
Platonov, S.S.: Fourier-jacobi harmonic analysis and approximation of functions Izvestiya. Mathematics 78(1), 106–153 (2014)
MathSciNet
MATH
Google Scholar
Szegö, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Publ., vol. 23, Am. Math. Soc., Providence, RI, 1959, Russian transl., Fizmatgiz, Moscow (1962)
Elgargati, A., Loualid, E.M., Daher, R.: Generalization of Titchmarsh theorem in the deformed Hankel setting. Ann. Univ. Ferrara 67, 243–252 (2021). https://doi.org/10.1007/s11565-021-00379-1
MathSciNet
Article
MATH
Google Scholar
Achak, A., Daher, R., Dhaouadi, L., et al.: An analog of Titchmarsh’s theorem for the q-Bessel transform. Ann. Univ. Ferrara 65, 1–13 (2019). https://doi.org/10.1007/s11565-018-0309-3
MathSciNet
Article
MATH
Google Scholar
Volosivets, S.S.: Fourier transforms and generalized Lipschitz classes in uniform metric. J. Math. Anal. Appl. 383, 344–352 (2011)
MathSciNet
Article
Google Scholar
Volosivets, S.S.: Multiple fourier coefficients and generalized Lipschitz classes in uniform metric. J. Math. Anal. Appl. https://doi.org/10.1016/j.jmaa.2015.02.011 (2015)
Berkak, E.M., Loualid, E.M., Daher, R.: Boas-type theorems for the q-Bessel Fourier transform. Anal. Math. Phys. 11, 102 (2021)
MathSciNet
Article
Google Scholar
Loualid, E.M., Elgargati, A., Daher, R.: Quaternion Fourier transform and generalized Lipschitz classes. Adv. Appl. Clifford Algebras 31(1), Paper No. 14 15 (2021)
Loualid, E.M., Elgargati, A., Berkak, E.M., Daher, R.: Boas-type theorems for the Bessel transform. Rev. R. Acad. Cienc. Exactas fís. Nat. Ser. A Mat. RACSAM 115(3), Paper No. 141 12 pp (2021)