Ahag, P., Cegrell, U., Kołodziej, S., Hiep, P.H., Zeriahi, A.: Partial pluricomplex energy and integrability exponents of plurisubharmonic functions. Adv. Math. 222, 2036–2058 (2009)
MathSciNet
Article
Google Scholar
Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère operator. Invent. Math. 37, 1–44 (1976)
MathSciNet
Article
Google Scholar
Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)
MathSciNet
Article
Google Scholar
Błocki, Z.: The complex Monge-Ampère Operator in Pluripotential Theory. Lectures Notes. (unpublish). Webside: http://www.gamma.im.uj.edu.pl/~Blocki (1998)
Berndtsson, B.: The openness conjecture and complex Brunn-Minkowski inequalities. Comp. Geom. Dyn. 10, 29–44 (2015)
MathSciNet
MATH
Google Scholar
Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38, 209–252 (1985)
MathSciNet
Article
Google Scholar
Cegrell, U.: Pluricomplex energy. Acta Mat. 180, 187–217 (1998)
MathSciNet
Article
Google Scholar
Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier. 54(1), 159–179 (2004)
MathSciNet
Article
Google Scholar
Chirka, E.M.: Complex Analytic Sets. Kluwer Academic Publisher (1989)
Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticié. Acta Math. 159, 153–169 (1987)
MathSciNet
Article
Google Scholar
Demailly, J. -P.: Monge-Ampère Operators, Lelong Numbers and Intersection Theory. Complex Analysis and Geometry. Univ. Series in Math. Edited by Ancona, V., Silva, A, Plenum Press, New-York (1993)
Demailly, J.-P.: Complex Analytic and Differential Geometry. http://www-fourier.ujf-grenoble.fr/demailly/books.html (2012)
Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. 34, 525–556 (2001)
MathSciNet
Article
Google Scholar
Demailly, J.-P., Hiep, P.H.: A sharp lower bound for the log canonical threshold. Acta Math. 212, 1–9 (2014)
MathSciNet
Article
Google Scholar
Guedj, V., Zeriahi, A.: Degenerate Complex Monge-Ampère Equations. EMS Tracts in Mathematics, vol. 26. European Mathematical Society, Zürich (2017)
Fernex, T., Ein, L., Mustata, M.: Bounds for log canonical thresholds with applications to birational rigidity. Math. Res. Lett. 10, 219–236 (2003)
MathSciNet
Article
Google Scholar
Fernex, T., Ein, L., Mustata, M.: Multiplicities and log canonical thresholds. J. Alg. Geom. 13, 603–615 (2004)
MathSciNet
Article
Google Scholar
Fernex, T., Ein, L., Mustata, M.: Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152, 93–114 (2010)
MathSciNet
Article
Google Scholar
Fornaess, J.E., Narasimhan, R.: The Levi problem on complex spaces with singularities. Math. Ann. 248, 47–72 (1980)
MathSciNet
Article
Google Scholar
Guan, Q., Zhou, X.: A proof of Demailly’s strong openness conjecture. Ann. Math. 182(2), 605–616 (2015)
MathSciNet
Article
Google Scholar
Guan, Q., Li, Z.: A characterization of regular points by Ohsawa-Takegoshi extension theorem. J. Mat. Soc. Japan. 170, 403–408 (2018)
MathSciNet
MATH
Google Scholar
Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-hall, Englewood Cliffs, NJ. (in Russian) (1965)
Hacon, C.D., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. of Math. 180, 523–571 (2014)
MathSciNet
Article
Google Scholar
Hai, L.M., Hiep, P.H., Hung, V.V.: The log canonical threshold of holomorphic functions. Internat. J. Math. 23(11), 8pp (2012)
MathSciNet
Article
Google Scholar
Hai, L.M., Hiep, P.H., Tung, T.: Estimates of level sets of holomorphic functions and applications to the weighted log canonical thresholds. The Journal of Geometric Analysis. https://doi.org/10.1007/s12220-020-00414-1 (2020)
Hiep, P.H.: The weighted log canonical threshold. C. R. Acad. Sci. Paris, Ser. I(352), 283–288 (2014)
MathSciNet
Article
Google Scholar
Hiep, P.H.: Continuity properties of certain weighted log canonical thresholds. C. R. Acad. Sci. Paris, Ser. I(355), 34–39 (2017)
MathSciNet
Article
Google Scholar
Hiep, P.H.: Log canonical thresholds and Monge-Ampère masses. Math. Ann. 370, 555–566 (2018)
MathSciNet
Article
Google Scholar
Lelong, P.: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. Fr. 85, 239–262 (1957)
Article
Google Scholar
Hörmander, L.: Notions of Convexity. Birkhäuser Boston (1994)
Kiselman, C.O.: Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math. 60, 173–197 (1994)
MathSciNet
Article
Google Scholar
Klimek, M.: Pluripotential Theory. New York (NY) the clarendon press (1991)
Kołodziej, S.: The complex Monge-Ampère equation. Acta Math. 180, 69–117 (1998)
MathSciNet
Article
Google Scholar
Kołodziej, S.: The Complex Monge-Ampère Equation and Pluripotential Theory. Memoirs of AMS. (2005)
Phong, D.H., Sturm, J.: Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions. Ann. of Math. 152, 277–329 (2000)
MathSciNet
Article
Google Scholar
Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \(\mathbb {C}^{n}\). Bull. Soc. Math. Fr. 100, 353–408 (1972)
MathSciNet
Article
Google Scholar
Siu, Y.T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)
MathSciNet
Article
Google Scholar