Abstract
The aim of this paper is to introduce the notion of Lelong number and the log canonical thresholds of plurisubharmonic functions on analytic subsets A in an open subset Ω of \(\mathbb {C}^{n}\). Next, we establish some results about the relationship between these quantities in the relation with the analyticity of A.
This is a preview of subscription content, access via your institution.
Similar content being viewed by others
References
Ahag, P., Cegrell, U., Kołodziej, S., Hiep, P.H., Zeriahi, A.: Partial pluricomplex energy and integrability exponents of plurisubharmonic functions. Adv. Math. 222, 2036–2058 (2009)
Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère operator. Invent. Math. 37, 1–44 (1976)
Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)
Błocki, Z.: The complex Monge-Ampère Operator in Pluripotential Theory. Lectures Notes. (unpublish). Webside: http://www.gamma.im.uj.edu.pl/~Blocki (1998)
Berndtsson, B.: The openness conjecture and complex Brunn-Minkowski inequalities. Comp. Geom. Dyn. 10, 29–44 (2015)
Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38, 209–252 (1985)
Cegrell, U.: Pluricomplex energy. Acta Mat. 180, 187–217 (1998)
Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier. 54(1), 159–179 (2004)
Chirka, E.M.: Complex Analytic Sets. Kluwer Academic Publisher (1989)
Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticié. Acta Math. 159, 153–169 (1987)
Demailly, J. -P.: Monge-Ampère Operators, Lelong Numbers and Intersection Theory. Complex Analysis and Geometry. Univ. Series in Math. Edited by Ancona, V., Silva, A, Plenum Press, New-York (1993)
Demailly, J.-P.: Complex Analytic and Differential Geometry. http://www-fourier.ujf-grenoble.fr/demailly/books.html (2012)
Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. 34, 525–556 (2001)
Demailly, J.-P., Hiep, P.H.: A sharp lower bound for the log canonical threshold. Acta Math. 212, 1–9 (2014)
Guedj, V., Zeriahi, A.: Degenerate Complex Monge-Ampère Equations. EMS Tracts in Mathematics, vol. 26. European Mathematical Society, Zürich (2017)
Fernex, T., Ein, L., Mustata, M.: Bounds for log canonical thresholds with applications to birational rigidity. Math. Res. Lett. 10, 219–236 (2003)
Fernex, T., Ein, L., Mustata, M.: Multiplicities and log canonical thresholds. J. Alg. Geom. 13, 603–615 (2004)
Fernex, T., Ein, L., Mustata, M.: Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152, 93–114 (2010)
Fornaess, J.E., Narasimhan, R.: The Levi problem on complex spaces with singularities. Math. Ann. 248, 47–72 (1980)
Guan, Q., Zhou, X.: A proof of Demailly’s strong openness conjecture. Ann. Math. 182(2), 605–616 (2015)
Guan, Q., Li, Z.: A characterization of regular points by Ohsawa-Takegoshi extension theorem. J. Mat. Soc. Japan. 170, 403–408 (2018)
Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-hall, Englewood Cliffs, NJ. (in Russian) (1965)
Hacon, C.D., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. of Math. 180, 523–571 (2014)
Hai, L.M., Hiep, P.H., Hung, V.V.: The log canonical threshold of holomorphic functions. Internat. J. Math. 23(11), 8pp (2012)
Hai, L.M., Hiep, P.H., Tung, T.: Estimates of level sets of holomorphic functions and applications to the weighted log canonical thresholds. The Journal of Geometric Analysis. https://doi.org/10.1007/s12220-020-00414-1 (2020)
Hiep, P.H.: The weighted log canonical threshold. C. R. Acad. Sci. Paris, Ser. I(352), 283–288 (2014)
Hiep, P.H.: Continuity properties of certain weighted log canonical thresholds. C. R. Acad. Sci. Paris, Ser. I(355), 34–39 (2017)
Hiep, P.H.: Log canonical thresholds and Monge-Ampère masses. Math. Ann. 370, 555–566 (2018)
Lelong, P.: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. Fr. 85, 239–262 (1957)
Hörmander, L.: Notions of Convexity. Birkhäuser Boston (1994)
Kiselman, C.O.: Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math. 60, 173–197 (1994)
Klimek, M.: Pluripotential Theory. New York (NY) the clarendon press (1991)
Kołodziej, S.: The complex Monge-Ampère equation. Acta Math. 180, 69–117 (1998)
Kołodziej, S.: The Complex Monge-Ampère Equation and Pluripotential Theory. Memoirs of AMS. (2005)
Phong, D.H., Sturm, J.: Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions. Ann. of Math. 152, 277–329 (2000)
Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \(\mathbb {C}^{n}\). Bull. Soc. Math. Fr. 100, 353–408 (1972)
Siu, Y.T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)
Acknowledgments
The authors would like to thank the referees very much for carefully reading the paper and for valuable remarks and suggestions which led to the improvements of the exposition of the paper. The third author would like to thank IMU for supporting his Ph.D studies at Hanoi National University of Education through the IMU Breakout Graduate Fellowship.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hai, L.M., Hiep, P.H. & Tung, T. Lelong Number and the Log Canonical Thresholds of Plurisubharmonic Functions on Analytic Subsets. Acta Math Vietnam 47, 223–241 (2022). https://doi.org/10.1007/s40306-021-00465-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40306-021-00465-8
Keywords
- Pure k-dimensional analytic subsets
- Irreducible analytic subset
- Ramified coverings
- Plurisubharmonic functions on analytic subsets
- Lelong number
- The log canonical thresholds