Skip to main content
Log in

A Brief Survey on Pure Cohen–Macaulayness in a Fixed Codimension

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

A concept of Cohen–Macaulay in codimension t is defined and characterized for arbitrary finitely generated modules and coherent sheaves by Miller, Novik, and Swartz in 2011. Soon after, Haghighi, Yassemi, and Zaare-Nahandi defined and studied CMt simplicial complexes, which is the pure version of the abovementioned concept and naturally generalizes both Cohen–Macaulay and Buchsbaum properties. The purpose of this paper is to survey briefly recent results of CMt simplicial complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanasiadis, C.A., Welker, V.: Buchsbaum complexes. Math. Z. 272(1–2), 131–149 (2012)

    Article  MathSciNet  Google Scholar 

  2. Björner, A., Wachs, M., Welker, V.: On sequentially Cohen–Macaulay complexes and posets. Israel J. Math. 169, 295–316 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)

  5. Cook, D., Nagel, U.: Cohen–Macaulay graphs and face vectors of flag complexes. SIAM J. Discrete Math. 26(1), 89–101 (2012)

    Article  MathSciNet  Google Scholar 

  6. Eagon, J.A., Reiner, V.: Resolutions of Stanley–Reisner rings and Alexander duality. J. Pure Appl. Algebra 130(3), 265–275 (1998)

    Article  MathSciNet  Google Scholar 

  7. Eisenbud, D., Green, M., Hulek, K., Popescu, S.: Restricting linear syzygies: algebra and geometry. Compos. Math. 141(6), 1460–1478 (2005)

    Article  MathSciNet  Google Scholar 

  8. Fröberg, R.: A note on the Stanley–Reisner ring of a join and of a suspension. Manuscripta Math. 60(1), 89–91 (1988)

  9. Haghighi, H., Seyed Fakhari, S.A., Yassemi, S., Zaare-Nahandi, R.: A generalization of Eagon–Reiner’s theorem and a characterization of bi-CMt bipartite and chordal graphs. Comm. Algebra 46(9), 3889–3898 (2018)

    Article  MathSciNet  Google Scholar 

  10. Haghighi, H., Yassemi, S., Zaare-Nahandi, R.: Bipartite S2 graphs are Cohen–Macaulay. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53(101)(2), 125–132 (2010)

    MATH  Google Scholar 

  11. Haghighi, H., Yassemi, S., Zaare-Nahandi, R.: A generalization of k-Cohen–Macaulay simplicial complexes. Ark. Mat. 50(2), 279–290 (2012)

    Article  MathSciNet  Google Scholar 

  12. Haghighi, H., Yassemi, S., Zaare-Nahandi, R.: Cohen–Macaulay bipartite graphs in arbitrary codimension. Proc. Am. Math. Soc. 143(5), 1981–1989 (2015)

    Article  MathSciNet  Google Scholar 

  13. Haghighi, H., Yassemi, S., Zaare-Nahandi, R.: Corrigenda to “Cohen–Macaulay bipartite graphs in arbitrary codimension. Proc. Am. Math. Soc. 143(5), 1981–1989 (2015)”. Proc. Am. Math. Soc. 149(8), 3597–3599 (2021)

  14. Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander duality. J. Algebraic Combin. 22(3), 289–302 (2005)

    Article  MathSciNet  Google Scholar 

  15. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer-Verlag London, Ltd., London (2011)

    Google Scholar 

  16. Herzog, J., Rahimi, A.: Bi-Cohen–Macaulay graphs. Electron. J. Combin. 23(1), Paper 1.1 14 pp (2016)

  17. Hochster, M.: Cohen–Macaulay Rings, Combinatorics, and Simplicial Complexes. Ring Theory, II. (Proc. Second Conf., Univ. Oklahoma, Norman, Okla. (1975)), 171–223. Lecture Notes in Pure and Appl Math., vol. 26. Dekker, New York (1977)

    Google Scholar 

  18. Hochster, M.: Some applications of the Frobenius in characteristic 0. Bull. Am. Math. Soc. 84(5), 886–912 (1978)

    Article  MathSciNet  Google Scholar 

  19. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Revised Reprint of the 1916 Original with an Introduction by Paul Roberts, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  20. Miller, E.: The Alexander duality functors and local duality with monomial support. J. Algebra 231(1), 180–234 (2000)

    Article  MathSciNet  Google Scholar 

  21. Miller, E., Novik, I., Swartz, E.: Face rings of simplicial complexes with singularities. Math. Ann. 351(4), 857–875 (2011)

    Article  MathSciNet  Google Scholar 

  22. Munkres, J.R.: Topological results in combinatorics. Michigan Math. J. 31(1), 113–128 (1984)

    Article  MathSciNet  Google Scholar 

  23. Pournaki, M.R., Seyed Fakhari, S.A., Yassemi, S.: A generalization of the Swartz equality. Glasg. Math. J. 56(2), 381–386 (2014)

    Article  MathSciNet  Google Scholar 

  24. Pournaki, M.R., Shibata, K., Terai, N., Yassemi, S.: On the monomial ideals which are Cohen–Macaulay in a fixed codimension. Submitted

  25. Provan, J.S., Billera, L.J.: Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res. 5(4), 576–594 (1980)

    Article  MathSciNet  Google Scholar 

  26. Reisner, G.A.: Cohen–Macaulay Quotients of Polynomial Rings. Ph.D Thesis. University of Minnesota (1974)

  27. Reisner, G.A.: Cohen–Macaulay quotients of polynomial rings. Advances in Math. 21(1), 30–49 (1976)

    Article  MathSciNet  Google Scholar 

  28. Sabzrou, H., Tousi, M., Yassemi, S.: Simplicial join via tensor product. Manuscripta Math. 126(2), 255–272 (2008)

    Article  MathSciNet  Google Scholar 

  29. Sava, C.: On the Stanley–Reisner ring of a join. An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 31(2), 145–148 (1985)

    MathSciNet  MATH  Google Scholar 

  30. Schenzel, P.: On the number of faces of simplicial complexes and the purity of Frobenius. Math. Z. 178(1), 125–142 (1981)

    Article  MathSciNet  Google Scholar 

  31. Stanley, R.P.: Combinatorics and Commutative Algebra. Second Edition, vol. 41. Birkhäuser Boston, Inc, Boston, MA (1996)

    Google Scholar 

  32. Stückrad, J., Vogel, W.: Eine Verallgemeinerung der Cohen–Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie. J. Math. Kyoto Univ. 13, 513–528 (1973)

    MathSciNet  MATH  Google Scholar 

  33. Stückrad, J., Vogel, W.: Uber das Amsterdamer Programm von W. Gröbner und Buchsbaum Varietäten. Monatsh. Math. 78, 433–445 (1974)

    Article  MathSciNet  Google Scholar 

  34. Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. An Interaction between Algebra, Geometry and Topology. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

  35. Terai, N.: On h-vectors of Buchsbaum Stanley–Reisner rings. Hokkaido Math. J. 25(1), 137–148 (1996)

  36. Terai, N., Trung, N.V.: Cohen–Macaulayness of large powers of Stanley–Reisner ideals. Adv. Math. 229(2), 711–730 (2012)

    Article  MathSciNet  Google Scholar 

  37. Varbaro, M., Zaare-Nahandi, R.: Simplicial complexes of small codimension. Proc. Am. Math. Soc. 147(8), 3347–3355 (2019)

    Article  MathSciNet  Google Scholar 

  38. Villarreal, R.H.: Unmixed bipartite graphs. Rev. Colombiana Mat. 41(2), 393–395 (2007)

  39. Yanagawa, K.: Alexander duality for Stanley–Reisner rings and squarefree \(\mathbb {N}^n\)-graded modules. J. Algebra 225(2), 630–645 (2000)

    Article  MathSciNet  Google Scholar 

  40. Yanagawa, K.: Dualizing complex of the face ring of a simplicial poset. J. Pure Appl. Algebra 215(9), 2231–2241 (2011)

    Article  MathSciNet  Google Scholar 

  41. Yanagawa, K.: Sliding functor and polarization functor for multigraded modules. Comm. Algebra 40(3), 1151–1166 (2012)

    Article  MathSciNet  Google Scholar 

  42. Zaare-Nahandi, R., Zaare-Nahandi, R.: The minimal free resolution of a class of square-free monomial ideals. J. Pure Appl. Algebra 189(1–3), 263–278 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her careful reading of the paper and for some suggestions that helped to improve the exposition of this paper.

Funding

The research of M.R. Pournaki was in part supported by a grant from The World Academy of Sciences (TWAS–UNESCO Associateship – Ref. 3240295905). The research of N. Terai was in part supported by a grant from The Japan Society for the Promotion of Science (JSPS Grant-in-Aid for Scientific Research (C) – Ref. 18K03244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Pournaki.

Additional information

Dedicated with gratitude to our colleague and friend Nguyen Tu Cuong on the occasion of his 70th birthday

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pournaki, M., Poursoltani, M., Terai, N. et al. A Brief Survey on Pure Cohen–Macaulayness in a Fixed Codimension. Acta Math Vietnam 47, 181–196 (2022). https://doi.org/10.1007/s40306-021-00441-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-021-00441-2

Keywords

Mathematics Subject Classification 2010

Navigation