Abstract
Assume that the function \(f:[0,\infty )\rightarrow \mathbb {R}\) is operator monotone in \([0,\infty )\). We can define the perspective \(\mathcal {P}_{f}\left (B,A\right ) \) by setting
where A, B > 0. In this paper, we show among others that, if σ ≥ C ≥ ρ > 0, D > 0, ς ≥ Q ≥ τ > 0 and 0 < n ≤ D − C ≤ N for some constants ρ, σ, ς, τ, n, N, then
Applications for the weighted operator geometric mean and the perspective
are also provided.
This is a preview of subscription content, access via your institution.
References
Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997). xii+ 347 pp ISBN: 0-387-94846-5
Dragomir, S.S.: Noncommutative perspectives of operator monotone functions in Hilbert spaces. arXiv:2009.00241. Preprint RGMIA Res. Rep. Coll. 23 Art. 118 (2020)
Dragomir, S.S.: Upper and lower bounds for noncommutative perspectives of operator monotone functions: the case of first variable. Preprint RGMIA Res. Rep. Coll. 23 Art. 120 (2020)
Ebadian, A., Nikoufar, I., Gordji, M.E.: Perspectives of matrix convex functions. Proc. Natl. Acad. Sci. USA 108(18), 7313–7314 (2011)
Effros, E.G.: A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. USA 106, 1006–1008 (2009)
Effros, E.G., Hansen, F.: Noncomutative perspectives. Ann. Funct. Anal. 5(2), 74–79 (2014)
Fujii, J.I., Kamei, E.: Uhlmann’s interpolational method for operator means. Math. Japon. 34(4), 541–547 (1989)
Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Japon. 34(3), 341–348 (1989)
Fujii, J.I., Seo, Y.: On parametrized operator means dominated by power ones. Sci. Math. 1301–306 (1998)
Furuta, T.: Precise lower bound of f(A) − f(B) for A > B > 0 and non-constant operator monotone function f on \([0,\infty )\). J. Math. Inequal. 9(1), 47–52 (2015)
Heinz, E.: Beiträge zur Störungsteorie der Spektralzerlegung. Math. Ann. 123, 415–438 (1951)
Löwner, K.: Über monotone matrix funktionen. Math. Z. 38, 177–216 (1934)
Nakamura, M., Umegaki, H.: A note on the entropy for operator algebras. Proc. Japan Acad. 37, 149–154 (1961)
Nikoufar, I., Shamohammadi, M.: The converse of the Loewner–Heinz inequality via perspective. Linear Multilinear Algebra 66(2), 243–249 (2018)
Acknowledgements
The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dragomir, S.S. Upper and Lower Bounds for Noncommutative Perspectives of Operator Monotone Functions: the Case of Second Variable. Acta Math Vietnam 47, 581–595 (2022). https://doi.org/10.1007/s40306-021-00439-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40306-021-00439-w
Keywords
- Noncommutative perspectives
- Relative operator entropy
- Operator monotone functions
Mathematics Subject Classification (2010)
- 47A63
- 47A30
- 15A60
- 26D15
- 26D10