Acta Mathematica Vietnamica

, Volume 44, Issue 3, pp 671–689 | Cite as

Eakin-Sathaye-Type Theorems for Joint Reductions and Good Filtrations of Ideals

  • Kriti Goel
  • Sudeshna Roy
  • J. K. VermaEmail author


Analogues of Eakin-Sathaye theorem for reductions of ideals are proved for \(\mathbb N^{s}\)-graded good filtrations. These analogues yield bounds on joint reduction vectors for a family of ideals and reduction numbers for \(\mathbb N\)-graded filtrations. Several examples related to lex-segment ideals, contracted ideals in 2-dimensional regular local rings and the filtration of integral and tight closures of powers of ideals in hypersurface rings are constructed to show effectiveness of these bounds.


Eakin-Sathaye theorem Good filtrations Equimultiple good filtrations Joint reduction 

Mathematics Subject Classification (2010)




We thank the referee for a very careful reading of the manuscript and suggesting several improvements.

Funding Information

Both of the first author and the second author are supported by UGC fellowship, Govt. of India.


  1. 1.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969). Mass.-London-Don Mills, OntzbMATHGoogle Scholar
  2. 2.
    Caviglia, G.: A theorem of Eakin and Sathaye and Green’s hyperplane restriction theorem. In: Commutative Algebra, Lecture Notes in Pure and Applied Mathematics, vol. 244, pp 1–5. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  3. 3.
    Cortadellas, T., Zarzuela, S.: On the depth of the fiber cone of filtrations. J. Algebra 198(2), 428–445 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Eakin, P., Sathaye, A.: Prestable ideals. J. Algebra 41(2), 439–454 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goel, K., Mukundan, V., Verma, J.K.: Tight closure of powers of ideals and tight Hilbert polynomials. to appear in Math. Proc. Cambridge Philos. Soc.Google Scholar
  6. 6.
    Goto, S., Shimoda, Y.: On the Rees algebras of Cohen-Macaulay local rings. In: Commutative Algebra (Fairfax, Va., 1979), Lecture Notes in Pure and Applied Mathematics, vol. 68, pp 201–231. Dekker, New York (1982)Google Scholar
  7. 7.
    Herzog, J., Saem, M.M., Zamani, N.: On the number of generators of powers of an ideal. arXiv preprint arXiv:1707.07302 (2017)
  8. 8.
    Hoa, L.T., Zarzuela, S.: Reduction number and a-invariant of good filtrations. Comm. Algebra 22(14), 5635–5656 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. of Math. (2) 96, 318–337 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huckaba, S., Marley, T.: Hilbert coefficients and the depths of associated graded rings. J. London Math. Soc. (2) 56(1), 64–76 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huneke, C., Sally, J.D.: Birational extensions in dimension two and integrally closed ideals. J. Algebra 115(2), 481–500 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)Google Scholar
  13. 13.
    Lipman, J.: On complete ideals in regular local rings. In: Algebraic geometry and commutative algebra, vol. I, pp 203–231. Kinokuniya, Tokyo (1987)Google Scholar
  14. 14.
    Lyubeznik, G.: A property of ideals in polynomial rings. Proc. Am. Math. Soc. 98(3), 399–400 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. 2nd. Translated from the Japanese by M. Reid, vol. 8. Cambridge University Press, Cambridge (1989)Google Scholar
  16. 16.
    Northcott, D.G., Rees, D.: Reductions of ideals in local rings. Proc. Cambridge Philos. Soc. 50, 145–158 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O’Carroll, L.: Around the Eakin-Sathaye theorem. J. Algebra 291(1), 259–268 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Okuma, T., Watanabe, K.I., Yoshida, K.I.: Normal reduction numbers for normal surface singularities with application to elliptic singularities of Brieskorn type. arXiv preprint arXiv:1804.03795 (2017)
  19. 19.
    Rees, D.: \(\mathfrak {a}\)-transforms of local rings and a theorem on multiplicities of ideals. Proc. Cambridge Philos. Soc. 57, 8–17 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rees, D.: A note on analytically unramified local rings. J. London Math. Soc. 36, 24–28 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rees, D.: Hilbert functions and pseudorational local rings of dimension two. J. London Math. Soc. (2) 24(3), 467–479 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rees, D.: Generalizations of reductions and mixed multiplicities. J. London Math. Soc. (2) 29(3), 397–414 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sally, J.D.: On the number of generators of powers of an ideal. Proc. Am. Math. Soc. 53(1), 24–26 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney pp. 285–362. Astérisque, Nos. 7 et 8 (1973)Google Scholar
  25. 25.
    Trung, N.V.: Constructive characterization of the reduction numbers. Compositio Math. 137(1), 99–113 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Viêt, D.Q.: A note on the Cohen-Macaulayness of Rees algebras of filtrations. Comm. Algebra 21(1), 221–229 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zariski, O.: Polynomial Ideals Defined by Infinitely Near Base Points. Am. J. Math. 60(1), 151–204 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zariski, O., Samuel, P.: Commutative Algebra. Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York (1960)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations