Advertisement

Acta Mathematica Vietnamica

, Volume 44, Issue 3, pp 691–700 | Cite as

4-Dimensional Licci Gorenstein Stanley-Reisner Ideals

  • Giancarlo Rinaldo
  • Naoki TeraiEmail author
Article
  • 16 Downloads

Abstract

We classify licci Gorenstein squarefree monomial ideals I with dim S/I ≤ 4, where S is a polynomial ring.

Keywords

Stanley-Reisner ideal Gorenstein ring Licci linkage 

Mathematics Subject Classification (2010)

Primary 13F55 Secondary 13H10 

Notes

Funding Information

This work was partially supported by JSPS Grant-in Aid for Scientific Research (C) 18K03244 and the Algebra group of Department of Mathematics, University of Trento.

References

  1. 1.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  2. 2.
    Bruns, W., Herzog, J.: On multigraded resolutions. Math. Proc. Camb. Phil. Soc. 118, 245–257 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buchweitz, R.: Contributions á la Théorie des Singularités. Thesis University of Paris (1981)Google Scholar
  4. 4.
    Capani, A., Niesi, G., Robbiano, L.: CocoA: A system for doing computations in commutative algebra. Available via anonymous ftp from lancelot.dima.unige.it (1998)
  5. 5.
    Huneke, C.: Linkage and Koszul homology of ideals. Am. J. Math. 104, 1043–1062 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Huneke, C., Ulrich, B.: The structure of linkage. Ann. Math. 126, 277–334 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Katthaen, L.: On homology spheres with few minimal non-faces. Proc. Am. Math. Soc. 140, 2489–2500 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kustin, A.R., Miller, M.: Deformation and linkage of Gorenstein algebras. Trans. Am. Math. Soc. 284, 501–534 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kimura, K., Terai, N., Yoshida, K.: On licci squarefree monomial ideals generated in degree two or with deviation two. J. Algebra 390, 264–289 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lutz, F.H.: Combinatorial 3-manifolds with 10 vertices. Beitr. Algebra. Geom. 49, 97–106 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Lutz, F.H.: The manifold page. http://page.math.tu-berlin.de/∼lutz/stellar/
  12. 12.
    Rinaldo, G., Terai, N.: Algorithms for 4 dimensional Licci Gorenstein Stanley-Reisner ideal. http://www.giancarlorinaldo.it/four-dimensional-licci-gorenstein.html
  13. 13.
    Rinaldo, G., Terai, N., Yoshida, K.: On the second powers of Stanley-Reisner ideals. J. Commutative Algebra 3, 1–22 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stanley, R.P.: Combinatorics and Commutative Algebra, 2nd edn. Birkhäuser, Boston (1996)Google Scholar
  15. 15.
    Trung, N.V., Tuan, T.M.: Equality of ordinary and symbolic powers of Stanley-Reisner ideals. J. Algebra 328, 77–93 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Watanabe, J.: A note on Gorenstein rings of embedding codimension three. Nagoya Math. J. 50, 227–232 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TrentoTrentoItaly
  2. 2.Faculty of EducationSaga UniversitySagaJapan

Personalised recommendations