Two Strong Convergence Theorems for the Common Null Point Problem in Banach Spaces

Abstract

In this paper, we study the common null point problem in Banach spaces. Then, using the shrinking projection method and ε-enlargement of maximal monotone operator, we prove two strong convergence theorems with nonsummable errors for solving this problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications Topological Fixed 1 2 and its 5, vol. 6. Springer, New York (2009)

    Google Scholar 

  2. 2.

    Alber, Y.I.: Metric and Generalized Projections in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 15–50. Lecture Notes in Pure and Appl Math., vol. 178. Dekker, New York (1996)

    Google Scholar 

  3. 3.

    Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator in Banach spaces. Panamer. Math. J. 4(2), 39–54 (1994)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42(2), 596–636 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bauschke, H.H., Combettes, P.L.: Construction of best Bregman approximations in reflexive Banach spaces. Proc. Am. Math. Soc. 131(12), 3757–3766 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56(5), 715–738 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Beer, G.: Topologies on Closed and 1 Convex Sets Mathematics and Its Applications, vol. 268. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

  9. 9.

    Browder, F.E.: Nonlinear maximal monotone operators in Banach space. Math. Ann. 175, 89–113 (1968)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Burachik, R.S., Svaiter, B.F.: ε-enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. 7(2), 117–132 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems Mathematics and Its Applications, vol. 62. Kluwer, Dordrecht (1990)

    Google Scholar 

  13. 13.

    Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 96(2), 299–306 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Stud. Adv Math, vol. 28. Cambridge Univ. Press, Cambridge (1990)

    Book  Google Scholar 

  15. 15.

    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938–945 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kimura, Y., Takahashi, W.: On a hybrid method for a family of relatively nonexpansive mappings in a Banach space. J. Math. Anal. Appl. 357(2), 356–363 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Kimura, Y.: A shrinking projection method for nonexpansive mappings with nonsummable errors in a Hadamard space. Ann. Oper. Res. 243(1-2), 89–94 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Franç,aise Informat. Recherche Opérationnalle 4(Sér. R-3), 154–158 (1970)

    MATH  Google Scholar 

  20. 20.

    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using the enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5(3), 283–299 (2003)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Qin, X., Cho, S.Y., Kang, S.M.: Strong convergence of shrinking projection methods for quasi−nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 234(3), 750–760 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Reich, S.: Book review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Am. Math. Soc. 26(2), 367–370 (1992)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7 (4), 7323–345 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in Hilbert space. Math. Progam. 87(1), 189–202 (2000). Ser. A

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific. J. Math. 33, 209–216 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 887–898 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2), 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  32. 32.

    Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341(1), 276–286 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Anal. Convex 16(7), 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Takahashi, W., Wen, C.-F., Yao, J.-C.: Strong convergence theorem by shrinking projection method for new nonlinear mappings in Banach spaces and applications. Optimization 66(4), 609–621 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Tsukada, M.: Convergence of best approximations in a smooth Banach space. J. Approx. Theory 40(4), 301–309 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (12), 1127–1138 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Saewan, S., Kumam, P.: The shrinking projection method for solving generalized equilibrium problems and common fixed points for asymptotically quasi-nonexpansive mappings. Fixed Point Theory Appl. 2011(9), 25 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and the editor for the valuable comments and suggestions, which helped to improve this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Truong Minh Tuyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tuyen, T.M., Trang, N.M. Two Strong Convergence Theorems for the Common Null Point Problem in Banach Spaces. Acta Math Vietnam 44, 935–953 (2019). https://doi.org/10.1007/s40306-019-00326-5

Download citation

Keywords

  • Split common null point problem
  • Maximal monotone operator
  • Metric resolvent
  • ε-enlargement

Mathematics Subject Classification (2010)

  • 47H05
  • 47H09
  • 47J25