Correspondence Scrolls


This paper initiates the study of a class of schemes that we call correspondence scrolls, which includes the rational normal scrolls and linearly embedded projective bundle of decomposable bundles, as well as degenerate K3 surfaces, Calabi-Yau threefolds, and many other examples.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alper, J., Fedorchuk, M., Smyth, D.I.: Finite Hilbert stability of (bi) canonical curves. Invent. Math. 191(3), 671–718 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bayer, D., Eisenbud, D.: Ribbons and their canonical embeddings. Trans. Am. Math. Soc. 347(3), 719–756 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Blum, S.: Subalgebras of bigraded Koszul algebras. J. Algebra 242(2), 795–809 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bruns, W., Herzog, J.: On the computation of a-invariants. Manuscripta Math. 77(2–3), 201–213 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Conca, A., De Negri, E., Gorla, E: Cartwright-sturmfels ideals associated to graphs and linear spaces. To appear in. J. Combinatorial Algebra, arXiv 1705, 00575 (2017)

    MATH  Google Scholar 

  6. 6.

    De Concini, C., Strickland, E.: On the variety of complexes. Adv. Math. 41, 56–77 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Deopurkar, A.: The canonical syzygy conjecture for ribbons. Math. Z. 288(3–4), 1157–1164 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Deopurkar, A., Fedorchuk, M., Swinarski, D.: Gröbner techniques and ribbons. Albanian. J. Math. 8(1), 55–70 (2014)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Diaconis, P., Eisenbud, D., Sturmfels, B.: Lattice Walks and Primary Decomposition. Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996). Progr. Math. 161, 173–193 (1998). Birkhäuser Boston, Boston, MA

    Google Scholar 

  10. 10.

    Eisenbud, D.: On the Resiliency of Determinantal Ideals. Commutative Algebra and Combinatorics (Kyoto, 1985), North-Holland, Amsterdam. Adv. Stud Pure Math 11, 29–38 (1987)

    Article  Google Scholar 

  11. 11.

    Eisenbud, D., Green, M., Hulek, K., Popescu, S.: Small schemes and varieties of minimal degree. Am. J. Math. 128(6), 1363–1389 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account). Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). Proc. Sympos. Pure Math 46(1), 3–13 (1987). Am. Math. Soc., Providence RI

    Article  Google Scholar 

  13. 13.

    Eisenbud, D., Schreyer, F.O.: Equations and syzygies of K3 carpets and unions of scrolls. arXiv:1804.08011 (2018)

  14. 14.

    Gallego, F., Purnaprajna, B.: Degenerations of k3 surfaces in projective space. Trans. Am. Math. Soc. 349(6), 2477–2492 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Gallego, F., Purnaprajna, B.: On the canonical rings of covers of surfaces of minimal degree. Trans. Am. Math. Soc. 355(7), 2715–2732 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Goto, S., Watanabe, K.: On graded rings. II (z n-graded rings). Tokyo J. Math 1(2), 237–261 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Harris, J.: Curves in Projective Space. With the Collaboration of David Eisenbud Séminaire De Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85. Presses de l’Université de Montréal, Montreal (1982)

    Google Scholar 

  18. 18.

    Hochster, M., Eagon, J.A.: Cohen-macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math. 93, 1020–1058 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Hosten, S., Sullivant, S.: Ideals of adjacent minors. J. Algebra 277(2), 615–642 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Manolache, N.: Double rational normal curves with linear syzygies. Manuscripta Math. 104(4), 503–517 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Nagel, U., Notari, R., Spreafico, M.L.: Curves of degree two and ropes on a line: their ideals and even liaison classes. J. Algebra 265(2), 772–793 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Schreyer, F.O.: Syzygies of canonical curves and special linear series. Math. Ann. 275(1), 105–137 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Shibuta, T.: Gröbner bases of contraction ideals. J. Algebraic Combin. 36(1), 1–19 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Sturmfels, B.: Gröbner bases and convex Polytopes University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

    Google Scholar 

Download references


The first author was partially supported by NSF grant No. 1502190. He would like to thank Frank-Olaf Schreyer, who pointed out in their joint work that the K3 carpets could be regarded as coming from correspondences. The second author was supported by NSF grant No. 1440140 while he was a Postdoctoral Fellow at the Mathematical Sciences Research Institute in Berkeley, CA. He would like to thank Aldo Conca and Matteo Varbaro for some helpful comments.

Author information



Corresponding author

Correspondence to David Eisenbud.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eisenbud, D., Sammartano, A. Correspondence Scrolls. Acta Math Vietnam 44, 101–116 (2019).

Download citation


  • Rational normal scroll
  • Veronese embedding
  • Join variety
  • Multiprojective space
  • Variety of complexes
  • Variety of minimal degree
  • Double structure
  • K3 surface
  • Calabi-Yau scheme
  • Gorenstein ring
  • Gröbner basis

Mathematics Subject Classification (2010)

  • Primary 14J40
  • Secondary 13H10
  • 13C40
  • 13P10
  • 14J26
  • 14J28
  • 14J32
  • 14M05
  • 14M12
  • 14M20