Combinatorial Algorithms for the Uniform-Cost Inverse 1-Center Problem on Weighted Trees

Abstract

Inverse 1-center problem on a network is to modify the edge lengths or vertex weights within certain bounds so that the prespecified vertex becomes an (absolute) 1-center of the perturbed network and the modifying cost is minimized. This paper focuses on the inverse 1-center problem on a weighted tree with uniform cost of edge length modification, a generalization for the analogous problem on an unweighted tree (Alizadeh and Burkard, Discrete Appl. Math. 159, 706–716, 2011). To solve this problem, we first deal with the weighted distance reduction problem on a weighted tree. Then, the weighted distances balancing problem on two rooted trees is introduced and efficiently solved. Combining these two problems, we derive a combinatorial algorithm with complexity of \(O(n^{2})\) to solve the inverse 1-center problem on a weighted tree if there exists no topology change during the edge length modification. Here, n is the number of vertices in the tree. Dropping this condition, the problem is solvable in \(O(n^{2}\mathbf {c})\) time, where \(\mathbf {c}\) is the compressed depth of the tree. Finally, some special cases of the problem with improved complexity, say linear time, are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Alizadeh, B., Burkard, R.E.: Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees. Networks 58(3), 190–200 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Alizadeh, B., Burkard, R.E.: Uniform-cost inverse absolute and vertex center location problems with edge length variations on trees. Discrete Appl. Math. 159(8), 706–716 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Alizadeh, B., Burkard, R.E., Pferschy, U.: Inverse 1-center location problems with edge length augmentation on trees. Computing 86(4), 331–343 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problems. Oper. Res. 28(5), 1130–1154 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Baroughi Bonab, F., Burkard, R.E., Gassner, E.: Inverse p-median problems with variable edge lengths. Math. Methods Oper. Res. 73(2), 263–280 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Baroughi Bonab, F., Burkard, R.E., Alizadeh, B.: Inverse median location problems with variable coordinates. CEJOR Cent. Eur. J. Oper. Res. 18(3), 365–381 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Burkard, R.E., Pleschiutschnig, C., Zhang, J.: Inverse median problems. Discrete Optim. 1(1), 23–39 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Burkard, R.E., Pleschiutschnig, C., Zhang, J.: The inverse 1-median problem on a cycle. Discrete Optim. 5(2), 242–253 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Burkard, R.E., Galavii, M., Gassnner, E.: The inverse Fermat-Weber problem. European J. Oper. Res. 206(1), 11–17 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Cai, M.C., Yang, X.G., Zhang, J.Z.: The complexity analysis of inverse center location problem. J. Global Optim. 15(2), 213–218 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  12. 12.

    Eiselt, H.A., Marianov, V.: Foundations of location analysis. international series in operations research and management science. Springer, New York (2011)

    Book  MATH  Google Scholar 

  13. 13.

    Galavii, M.: The inverse 1-median problem on a tree and on a path. Electron. Notes Discrete Math. 36, 1241–1248 (2010)

    Article  MATH  Google Scholar 

  14. 14.

    Guan, X., Zhang, B.: Inverse 1-median problem on trees under weighted Hamming distance. J. Global Optim. 54(1), 75–82 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Hatzl, J., Karrenbauer, A.: A combinatorial algorithm for the 1-median problem in \(\mathbb {R}^{d}\) with the Chebyshev norm. Oper. Res. Lett. 38(5), 383–385 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Handler, G.Y.: Minimax location of a facility in an undirected tree graph. Transp. Sci. 7, 287–293 (1973)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. I: the p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location: Models and Methods. North-Holland (1988)

  19. 19.

    Megiddo, N.: Linear-time algorithms for linear programming in \(\mathbb {R}^{3}\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Nguyen, K.T.: Inverse 1-median problem on block graphs with variable vertex weights. J. Optim. Theory Appl. 68(3), 944–957 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Nguyen, K.T.: Reverse 1-center problem on weighted trees. Optimization 65(1), 253–264 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Nguyen, K.T., Anh, L.Q.: Inverse k-centrum problem on trees with variable vertex weights. Math. Methods Oper. Res. 82(1), 19–30 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Nguyen, K.T., Chassein, A.: Inverse eccentric vertex problem on networks. CEJOR Cent. Eur. J. Oper. Res. 23(3), 687–698 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Nguyen, K.T., Sepasian, A.R.: The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance. J. Comb. Optim. 32(3), 872–884 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Sepasian, A.R., Rahbarnia, F.: An \(O(n\log n)\) algorithm for the inverse 1-median problem on trees with variable vertex weights and edge reductions. Optimization 64(3), 595–602 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee and editor, whose valuable comments helped us to improve this paper.

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2016.08.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kien Trung Nguyen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.T., Nguyen-Thu, H. & Hung, N.T. Combinatorial Algorithms for the Uniform-Cost Inverse 1-Center Problem on Weighted Trees. Acta Math Vietnam 44, 813–831 (2019). https://doi.org/10.1007/s40306-018-0286-8

Download citation

Keywords

  • Location problem
  • Inverse optimization problem
  • 1-Center problem
  • Tree

Mathematics Subject Classification (2010)

  • 90B10
  • 90B80
  • 90C27