Spectral Characterizations of Solvability and Stability for Delay Differential-Algebraic Equations


The solvability and stability analyses of linear time invariant systems of delay differential-algebraic equations (DDAEs) are analyzed. The behavior approach is applied to DDAEs in order to establish characterizations of their solvability in terms of spectral conditions. Furthermore, examples are delivered to demonstrate that the eigenvalue-based approach in analyzing the exponential stability of dynamical systems is only valid for a special class of DDAEs, namely, non-advanced. Then, a new concept of weak stability is proposed and studied for DDAEs whose matrix coefficients pairwise commute.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Ascher, U.M., Petzold, L.R.: The numerical solution of delay-differential algebraic equations of retarded and neutral type. SIAM J. Numer. Anal. 32(5), 1635–1657 (1995)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Baker, C.T.H., Paul, C.A.H., Tian, H.: Differential algebraic equations with after-effect. J. Comput. Appl. Math. 140(1–2), 63–80 (2002)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, New York (2003)

    Google Scholar 

  4. 4.

    Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York-London (1963)

    Google Scholar 

  5. 5.

    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)

    Google Scholar 

  6. 6.

    Byers, R., Geerts, T., Mehrmann, V.: Descriptor systems without controllability at infinity. SIAM J. Control Optim. 35(2), 462–479 (1997)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Byers, R., Kunkel, P., Mehrmann, V.: Regularization of linear descriptor systems with variable coefficients. SIAM J. Control Optim. 35(1), 117–133 (1997)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Campbell, S.L.: Singular linear systems of differential equations with delays. Appl. Anal. 11(2), 129–136 (1980)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Campbell, S.L.: Nonregular 2D descriptor delay systems. IMA J. Math. Control Inform. 12, 57–67 (1995)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Campbell, S.L., Linh, V.H.: Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions. Appl. Math. Comput. 208(2), 397–415 (2009)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(4), 329–359 (1996)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Du, N.H., Linh, V.H., Mehrmann, V., Thuan, D.D.: Stability and robust stability of linear time-invariant delay differential-algebraic equations. SIAM J. Matrix Anal. Appl. 34(4), 1631–1654 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273(1), 24–44 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Gluesing-Luerssen, H.: Linear Delay-Differential Systems with Commensurate Delays: an Algebraic Approach Lecture Notes in Mathematics, vol. 1770. Springer, Berlin (2002)

    Google Scholar 

  15. 15.

    Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. Academic Press, New York-London (1982)

    Google Scholar 

  16. 16.

    Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Comput. Math. 29(3), 229–247 (2008)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Ha, P.: Analysis and Numerical Solutions of Delay Differential-Algebraic Equations. Dissertation, Institut für Mathematik, TU Berlin, Berlin, Germany (2015)

  18. 18.

    Ha, P., Mehrmann, V.: Analysis and reformulation of linear delay differential-algebraic equations. Electr. J. Linear Algebra 23, 703–730 (2012)

    MATH  Google Scholar 

  19. 19.

    Ha, P., Mehrmann, V.: Analysis and numerical solution of linear delay differential-algebraic equations. BIT 56(2), 633–657 (2016)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential-Equations. Springer, New York (1993)

    Google Scholar 

  21. 21.

    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. 22.

    Khusainov, D.Y., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Zilina Math. Ser. 17(1), 101–108 (2003)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS, Zürich (2006)

    Google Scholar 

  24. 24.

    Linh, V.H., Thuan, D.D.: Spectrum-based robust stability analysis of linear delay differential-algebraic equations. In: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory, Festschrift in Honor of Volker Mehrmann. Chapter 19, pp. 533–557. Springer, Cham (2015)

    Google Scholar 

  25. 25.

    Michiels, W.: Spectrum-based stability analysis and stabilisation of systems described by delay differential algebraic equations. IET Control Theory Appl. 5(16), 1829–1842 (2011)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Motzkin, T.S., Taussky, O.: Pairs of matrices with property. L. Trans. Am. Math. Soc. 73, 108–114 (1952)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory. a Behavioural Approach. Springer, New York (1998)

    Google Scholar 

  28. 28.

    Pospisil, M.: Representation and stability of solutions of systems of functional differential equations with multiple delays. Electron. J. Qual. Theory Differ. Equ. 54, 30 (2012)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Shampine, L.F., Gahinet, P.: Delay-differential-algebraic equations in control theory. Appl. Numer. Math. 56(3–4), 574–588 (2006)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  31. 31.

    Tian, H., Yu, Q., Kuang, J.: Asymptotic stability of linear neutral delay differential-algebraic equations and Runge–Kutta methods. SIAM J. Numer. Anal. 52 (1), 68–82 (2014)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Trenn, S.: Regularity of distributional differential algebraic equations. Math. Control Signals Syst. 21(3), 229–264 (2009)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zhu, W., Petzold, L.R.: Asymptotic stability of linear delay differential-algebraic equations and numerical methods. Appl. Numer. Math. 24(2–3), 247–264 (1997)

    MathSciNet  Article  Google Scholar 

Download references


The author would like to thank the anonymous referee for his constructive comments and suggestions that improve the quality of this paper. The author also thanks Stephan Trenn for helpful comments and fruitful discussions on the first topic of this article.


This research is funded by the Vietnamese National Foundation for Science and Technology Development (NAFOSTED) under the project number 101.01-2017.302.

Author information



Corresponding author

Correspondence to Phi Ha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, P. Spectral Characterizations of Solvability and Stability for Delay Differential-Algebraic Equations. Acta Math Vietnam 43, 715–735 (2018). https://doi.org/10.1007/s40306-018-0279-7

Download citation


  • Differential-algebraic equations
  • Time delay
  • Matrix polynomials
  • Commutative
  • Exponential stability
  • Weak stability

Mathematics Subject Classification (2010)

  • 34A09
  • 34A12
  • 65L05
  • 65H10