Acta Mathematica Vietnamica

, Volume 43, Issue 4, pp 737–747 | Cite as

Parameterization of Translation-Invariant Two-Dimensional Two-State Quantum Walks

  • Hiromichi OhnoEmail author


This study investigates unitary equivalence classes of translation-invariant two-dimensional two-state quantum walks. We show that unitary equivalence classes of such quantum walks are essentially parameterized by two real parameters.


Quantum walks Two-dimensional two-state quantum walks Translation-invariant quantum walks Unitary equivalence 

Mathematics Subject Classification (2010)



Funding information

This work was supported by JSPS KAKENHI Grant Numbers 17K05274.


  1. 1.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33Th Annual ACM Symposium on Theory of Computing, pp 37–49. ACM, New York (2001)Google Scholar
  2. 2.
    Cantero, M.J., Grünbaum, F.A., Moral, L., Velázquez, L.: One-dimensional quantum walks with one defect. Rev. Math. Phys. 24(2), 52 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, T., Zhang, X., Zhang, X.: Quantum sensing of noises in one and two dimensional quantum walks. Sci. Rep. 7, 4962 (2017)CrossRefGoogle Scholar
  4. 4.
    Di Franco, C., Paternostro, M.: Localizationlike effect in two-dimensional alternate quantum walks with periodic coin operations. Phys. Rev. A 91(1), 012328 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Goyal, S.K., Konrad, T., Diósi, L.: Unitary equivalence of quantum walks. Phys. Lett. A 379(3), 100–104 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gudder, S.P.: Quantum Probability. Academic Press, Inc, Boston (1988)zbMATHGoogle Scholar
  7. 7.
    Konno, N.: Quantum random walks in one dimensional. Quantum Inf. Process. 1(5), 345–354 (2003)CrossRefGoogle Scholar
  8. 8.
    Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks. Quantum Inf. Process. 15(9), 3599–3617 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ohno, H.: Unitary equivalence classes of one-dimensional quantum walks II. Quantum Inf. Process. 16(12), 17 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3(1), 11–30 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. Proceedings of 45th Annual, IEEE Symposium Foundations Computer Science, pp. 32–41 (2004)Google Scholar
  12. 12.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Verga, A.D.: Edge states in a two-dimensional quantum walk with disorder. Eur. Phys. J. B 90, 41 (2017)CrossRefGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EngineeringShinshu UniversityNaganoJapan

Personalised recommendations