Acta Mathematica Vietnamica

, Volume 43, Issue 4, pp 749–759 | Cite as

Rhaly Operators on Small Weighted Hardy Spaces

  • Tan Pin Lin
  • Minh Luan Doan
  • Le Hai KhoiEmail author


We study several properties of Rhaly operators on small weighted Hardy spaces of holomorphic functions in the unit disc \(\mathbb {D}\). In particular, we obtain criteria for boundedness, compactness, Hilbert-Schmidt norm, and p-Schatten class membership of such operators. A closedness of Rhaly operator is also studied.


Hilbert spaces Entire functions Rhaly operators 

Mathematics Subject Classification (2010)

30D15 47B37 



The authors would like to thank the referee for useful remarks. Thanks also go to Hervé Queffélec for valuable comments on the first draft of this paper.

Funding Information

Supported in part by MOE’s AcRF Tier 1 grants M4011166.110 (RG24/13) and M4011724.110 (RG128/16).


  1. 1.
    Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. (Szeged) 26, 125–137 (1965)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in advanced mathematics. CRC press, Boca Raton (1995)zbMATHGoogle Scholar
  3. 3.
    Doan, M.L., Khoi, L.H.: Hilbert spaces of entire functions and composition operators. Compl. Anal. Oper. Theory 10(1), 213–230 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    König, H.: Eigenvalue Distribution of Compact Operators. Operator Theory: Advances and Applications, vol. 16. Birkhäuser Verlag, Basel (1986)CrossRefGoogle Scholar
  5. 5.
    Leibowitz, G.: Rhaly matrices. J. Math. Anal. Appl. 128(1), 272–286 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    MacCluer, B.D., Zeng, X., Zorboska, N.: Composition operators on small weighted Hardy spaces. Ill. J. Math. 40(4), 662–677 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Rhaly, H.C. Jr: p-Cesàro matrices. Houst. J. Math. 15(1), 137–146 (1989)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc, New York (1991)Google Scholar
  9. 9.
    Yildirim, M.: On the spectrum of the Rhaly operators on b v 0. Commun. Korean Math. Soc. 18(4), 669–676 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhu, K.: Operator Theory in Function Spaces Monographs and Textbooks in Pure and Applied Mathematics, vol. 139. Marcel Dekker, Inc., New York (1990)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological University (NTU)SingaporeSingapore
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations