Acta Mathematica Vietnamica

, Volume 44, Issue 3, pp 587–601 | Cite as

Critical Paired Dominating Sets and Irreducible Decompositions of Powers of Edge Ideals

  • Nguyen Thi Dung
  • Nguyen Thi Thanh Tam
  • Hoang Le TruongEmail author
  • Hoang Ngoc Yen


Let G be a finite simple graph. A set S of vertices is a critical paired dominating set of G, if every vertex is adjacent to a vertex in S and the removal of any vertex does not change the matching number of G. In this paper, we give a characterization of graphs G which has a critical paired dominating set in terms of the irreducible decomposition of powers of the edge ideal associated to G.


Edge ideals Irreducible ideals Irreducible decomposition Matching Factor-critical graphs Critical paired dominating set 

Mathematics Subject Classification (2010)

13A30 13D45 13E05 13H10 



The authors would like to thank Professor Marcel Morales for his interesting discussions on this subject. The authors would like to thank the referee for the valuable comments to improve this article.

Funding Information

This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04 − 2017.14.


  1. 1.
    Chen, J., Morey, S., Sung, A.: The stable set of associated primes of the ideal of a graph. Rocky Mountain J. Math. 32(1), 71–89 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lou, D., Rao, D.: Characterizing factor critical graphs and an algorithm. Australas. J. Combin. 30, 51–56 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Edmonds, J.: Paths, trees and flowers. Canad. J. Math. 17, 449–467 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gallai, T.: Neuer Beweis eines Tutte’schen Satzes. (German) Magyar Tud. Akad. Mat. Kutató. Int. Kö,zl. 8, 135–139 (1963)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hà, H. T., Morey, S.: Embedded associated primes of powers of square-free monomial ideals. J. Pure Appl. Algebra 214(4), 301–308 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291(2), 534–550 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Herzog, J., Hibi, T.: Bounding the socles of powers of squarefree monomial ideals. Commutative Algebra and Noncommutative Algebraic Geometry. Vol. II. Math. Sci. Res. Inst. Publ., vol. 68, pp 223–229. Cambridge Univ. Press, New York (2015)Google Scholar
  8. 8.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Hien, H.T.T., Lam, H.M.: Combinatorial characterizations of the saturation and the associated primes of the fourth power of edge ideals. Acta Math. Vietnam. 40(3), 511–526 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Haynes, T.W., Slater, P.J.: Paired–domination and the paired–domatic number. Congr. Numer. 109, 65–72 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Haynes, T.W., Slater, P.J.: Paired–domination in graphs. Networks 32(3), 199–206 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lovász, L.: A note on a factor-critical graphs. Studia Sci. Math. Hungar. 7, 279–280 (1972)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lovász, L., Plummer, M.D.: Matching theory. North-Holland Publishing Co., Amsterdam (1986)zbMATHGoogle Scholar
  14. 14.
    Martinez-Bernal, J., Morey, S., Villarreal, R.: Associated primes of powers of edge ideals. Collect. Math. 63(3), 361–374 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Miller, E., Sturmfels, B.: Combinatorial commutative algebra graduate texts in mathematics, vol. 227. Springer-Verlag, New York (2005)Google Scholar
  16. 16.
    Noether, E.: Idealtheorie in Ringbereichen. Math. Ann. 83, 24–66 (1921)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Proffitt, K.E., Haynes, T.W., Slater, P.J.: Paired–domination in grid graphs. Congr. Numer. 150, 161–172 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Shan, E., Kang, L., Henning, M.A.: A characterization of trees with equal total domination and paired–domination numbers. Australas. J. Combin. 30, 31–39 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Terai, N., Trung, N.V.: On the associated primes and the depth of the second power of a squarefree monomial ideals. J. Pure Appl. Algebra 218(6), 1117–1129 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nguyen Thi Dung
    • 1
  • Nguyen Thi Thanh Tam
    • 2
  • Hoang Le Truong
    • 3
    • 4
    Email author
  • Hoang Ngoc Yen
    • 5
  1. 1.Thai Nguyen University of Agriculture and ForestryThai NguyenVietnam
  2. 2.Hung Vuong UniversityViet TriVietnam
  3. 3.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.Mathematik und InformatikUniversität des SaarlandesSaarbrückenGermany
  5. 5.Thai Nguyen University of EducationThai NguyenVietnam

Personalised recommendations