Absolutely lq-Finite Extensions


We describe the lower quasi-finite extensions \(K/k\) of characteristic \(p>0\), which are defined as follows: for every \(n\in \mathbb N, k^{p^{-n}} \cap K/k \) is finite. We are especially interested in examining the absolute case. In this regard, we give necessary and sufficient condition for an absolutely lq-finite extension to be of finite size. Moreover, we show that any extension that is at the same time modular and lq-finite is of finite size. Furthermore, we construct an example of extension \(K/k\) of infinite size such that for any intermediate field L of \(K/k, L\) is of finite size over k.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bourbaki, N.: Eléments de Mathématique. Algèbre Commutative. Springer, Berlin (2006)

    Google Scholar 

  2. 2.

    Bourbaki, N.: Algèbre, Chapitre 1 à 3. Springer, Berlin (2007)

    Google Scholar 

  3. 3.

    Chellali, M., Fliouet, E.H.: Sur les extensions purement inséparable. Arch. Math. (Basel) 81(4), 369–382 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chellali, M., Fliouet, E.H.: Extensions purement inséparables d’exposant non borné. Arch. Math. (Brno) 40(2), 129–159 (2004)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Chellali, M., Fliouet, E.H.: Extensions presque modulaire. Ann. Sci. Math. Québec 28(1–2), 65–75 (2004)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chellali, M., Fliouet, E.H.: Sur la tour des clôtures modulaires. An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 14(1), 45–66 (2006)

    MathSciNet  Google Scholar 

  7. 7.

    Chellali, M., Fliouet, E.H.: Théorème de la clôture lq-modulaire et applications. Colloq. Math. 122(2), 275–287 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Chellali, M., Fliouet, E.H.: Extensions i-modulaires. Int. J. Algebra 6(9-12), 457–492 (2012)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Deveney, J.K.: w 0-generated field extensions. Arch. Math. (Basel) 47(5), 410–412 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Fliouet, E.H.: Generalization of quasi-modular extensions. In: Homological and Combinatorial Methods in Algebra, vol. 228, pp. 67–82. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-74195-6

  11. 11.

    Fried, M.D., Jarden, M.: Field Arithmetic. Springer, Berlin (2008)

    Google Scholar 

  12. 12.

    Karpilovsky, G.: Topics in Field Theory. North-Holland Publishing Co., Amsterdam (1989)

    Google Scholar 

  13. 13.

    Kime, L.A.: Purely inseparable modular extensions of unbounded exponent. Trans. Am. Math. Soc. 176, 335–349 (1973)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Mordeson, J.N., Vinograde, B.: Structure of Arbitrary Purely Inseparable Extension Fields, p 173. Springer, Berlin (1970)

    Google Scholar 

  15. 15.

    Pickert, G.: Inseparable Körperweiterungen. Math. Z. 52, 81–136 (1949)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Sweedler, M.E.: Structure of inseparable extensions. Ann. Math. (2) 87, 401–410 (1968)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Waterhouse, W.C.: The structure of inseparable field extensions. Trans. Am. Math. Soc. 211, 39–56 (1975)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to El Hassane Fliouet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fliouet, E.H. Absolutely lq-Finite Extensions. Acta Math Vietnam 44, 751–779 (2019). https://doi.org/10.1007/s40306-018-0271-2

Download citation


  • Purely inseparable
  • Irrationality degree
  • Modular extension
  • q-finite extension
  • lq-finite extension
  • Absolutely lq-finite extension

Mathematics Subject Classification (2010)

  • 12F15