Acta Mathematica Vietnamica

, Volume 43, Issue 4, pp 701–713

# The Permanent Functions of Tensors

• Qing-Wen Wang
• Fuzhen Zhang
Article

## Abstract

By a tensor we mean a multidimensional array (matrix) or hypermatrix over a number field. This article aims to set an account of the studies on the permanent functions of tensors. We formulate the definitions of 1-permanent, 2-permanent, and k-permanent of a tensor in terms of hyperplanes, planes, and k-planes of the tensor; we discuss the polytopes of stochastic tensors; at the end, we present an extension of the generalized matrix function for tensors.

## Keywords

Birkhoff-von Neumann theorem Doubly stochastic matrix Hypermatrix Matrix of higher order Multidimensional array Permanent Polytope Stochastic tensor Tensor

## Mathematics Subject Classification (2010)

15A15 15A02 52B12

## Notes

### Acknowledgements

The work was done while the second author was visiting Shanghai University during his sabbatical leave from Nova Southeastern University. This expository article was written based on the second author’s presentation at ICMAA in Da Nang, Vietnam, June 14–18, 2017. The authors appreciate the communications with C. Bu, L. Cui, S. Hu, L. Qi, A. Taranenko, Y. Wei, and G. Yu during the preparation of the manuscript.

### Funding Information

The work of Wang was partially supported by the Natural Science Foundation of China (11571220); the work of Zhang was partially supported by an NSU PFRDG Research Scholar grant.

## References

1. 1.
Ahmed, M.: Algebraic Combinatorics of Magic Squares. University of Califorina - Davis, Ph.D. Thesis (2004)Google Scholar
2. 2.
Barvinok, A.: Computing the permanent of (some) complex matrices. Found. Comput. Math. 16(2), 329–342 (2016)
3. 3.
Brualdi, R.A., Csima, J.: Stochastic patterns. J. Combin. Theory Ser. A 19, 1–12 (1975)
4. 4.
Brualdi, R.A., Csima, J.: Extremal plane stochastic matrices of dimension three. Linear Algebra Appl. 11(2), 105–133 (1975)
5. 5.
Brualdi, R.A., Csima, J.: Small matrices of large dimension. Proceedings of the First Conference of the International Linear Algebra Society (Provo, UT, 1989). Linear Algebra Appl. 150, 227–241 (1991)
6. 6.
Bu, C., Wang, W., Sun, L., Zhou, J.: Minimum (maximum) rank of sign pattern tensors and sign nonsingular tensors. Linear Algebra Appl. 483, 101–114 (2015)
7. 7.
Cayley, A.: On the theory of linear transformations. Cambridge Math. J. 4, 193–209 (1845)Google Scholar
8. 8.
Cayley, A.: Sur les déterminants gauches. (Suite du Memoire T. XXXII. p. 119). (French). J. Reine Angew. Math. 38, 93–96 (1849)
9. 9.
Chang, H., Paksoy, V.E., Zhang, F.: Polytopes of stochastic tensors. Ann. Funct. Anal. 7(3), 386–393 (2016)
10. 10.
Che, M., Bu, C., Qi, L., Wei, Y.: Nonnegative tensors revisited: plane stochastic tensors. Linear Multilinear Algebra.
11. 11.
Christensen, J.P.R., Fischer, P.: Multidimensional stochastic matrices and error-correcting codes. Linear Algebra Appl. 183, 255–276 (1993)
12. 12.
Cifuentes, D., Parrilo, P.A.: An efficient tree decomposition method for permanents and mixed discriminants. Linear Algebra Appl. 493, 45–81 (2016)
13. 13.
Colbourn, C.J., Dinitz, J.: Handbook of Combinatorial Designs, Second Edition. Chapman and hall/CRC Press, Boca Raton (2006)Google Scholar
14. 14.
Cui, L.-B., Li, W., Ng, M.K.: Birkhoff–von Neumann theorem for multistochastic tensors. SIAM J. Matrix Anal. Appl. 35(3), 956–973 (2014)
15. 15.
Ding, W., Wei, Y.: Theory and Computation of Tensors. Elsevier/Academic Press, London (2016)
16. 16.
Dow, S.J., Gibson, P.M.: Permanents of d-dimensional matrices. Linear Algebra Appl. 90, 133–145 (1987)
17. 17.
Dow, S.J., Gibson, P.M.: An upper bound for the permanent of a 3-dimensional (0,1)-matrix. Proc. Am. Math. Soc. 99(1), 29–34 (1987)
18. 18.
Fischer, P., Swart, E.R.: Three-dimensional line stochastic matrices and extreme points. Linear Algebra Appl. 69, 179–203 (1985)
19. 19.
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Mathematics: Theory $$\&$$ Applications. Birkhäuser Boston, Inc., Boston (1994)
20. 20.
Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symbolic Comput. 50, 508–531 (2013)
21. 21.
Jurkat, W.B., Ryser, H.J.: Extremal configurations and decomposition theorems. I. J. Algebra 8, 194–222 (1968)
22. 22.
Ke, R., Li, W., Xiao, M.: Characterization of extreme points of multi-stochastic tensors. Comput. Methods Appl. Math. 16(3), 459–274 (2016)
23. 23.
Liang, Y., Ke, R., Li, W., Cui, L.: On the extreme point of m-stochastic tensors. Manuscript (2017)Google Scholar
24. 24.
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
25. 25.
Li, Z., Zhang, F., Zhang, X.-D.: On the number of vertices of the stochastic tensor polytope. Linear Multilinear Algebra 65(10), 2064–2075 (2017)
26. 26.
Lim, L.-H.: Tensors and Hypermatrices. Chapter 15 in Handbook of Linear Algebra, Second Edition. Chapman and hall/CRC, Boca Raton (2013)Google Scholar
27. 27.
Linial, N., Luria, Z.: An upper bound on the number of high-dimensional permutations. Combinatorica 34(4), 471–486 (2014)
28. 28.
Marchi, E., Tarazaga, P.: About $$(k, n)$$ stochastic matrices. Linear Algebra Appl. 26, 15–30 (1979)
29. 29.
Merris, R.: Trace functions. I. Duke. Math. J. 38, 527–530 (1971)
30. 30.
Minc, H.: Theory of permanents 1978-1981. Linear Multilinear Algebra 12(4), 227–263 (1983)
31. 31.
Oldenburger, R.: Higher dimensional determinants. Am. Math. Monthly 47(1), 25–33 (1940)
32. 32.
Qi, L., Luo, Z.: Tensor Analysis. Spectral Theory and Special Tensors. Society for Industrial and Applied Mathematics, Philadelphia (2017)
33. 33.
Schrage, G.: Some inequalities for multidimensional (0,1)-matrices. Discrete Math. 23(2), 169–175 (1978)
34. 34.
Shao, J.-Y., Shan, H.-Y., Zhang, L.: On some properties of the determinants of tensors. Linear Algebra Appl. 439(10), 3057–3069 (2013)
35. 35.
Taranenko, A.A.: Permanents of multidimensional matrices: properties and applications. (Russian) Diskretn. Anal. Issled. Oper. 23(4), 35–101 (2016). translation in J. Appl. Ind. Math. 10(4), 567–604
36. 36.
Tichy, M.C.: Sampling of partially distinguishable bosons and the relation to the multidimensional permanent. Phys. Rev. A 022316, 91 (2015)Google Scholar
37. 37.
Zhang, F.: Matrix Theory: Basic Results and Techniques, Second edition. Springer, New York (2011)Google Scholar
38. 38.
Zhang, F.: An update on a few permanent conjectures. Spec. Matrices 4(15-02), 305–316 (2016)