Acta Mathematica Vietnamica

, Volume 44, Issue 1, pp 307–323 | Cite as

Hibi Algebras and Representation Theory

  • Sangjib KimEmail author
  • Victor Protsak


This paper gives a survey on the relation between Hibi algebras and representation theory. The notion of Hodge algebras or algebras with straightening laws has been proved to be very useful to describe the structure of many important algebras in classical invariant theory and representation theory (Bruns and Herzog 1993; De Concini et al. 1982; Eisenbud 1980; Gonciulea and Lakshmibai 2001; Seshadri 2007). In particular, a special type of such algebras introduced by Hibi (1987) provides a nice bridge between combinatorics and representation theory of classical groups. We will examine certain poset structures of Young tableaux and affine monoids, Hibi algebras in toric degenerations of flag varieties, and their relations to polynomial representations of the complex general linear group.


Algebras with straightening laws Hibi algebras Distributive lattices Affine semigroups Gelfand-Tsetlin patterns Representations General linear groups 

Mathematics Subject Classification (2010)

13A50 13F50 20G05 05E10 05E15 



Parts of this article were presented at The Prospects for Commutative Algebra, Osaka, Japan, July 2017. We express our sincere gratitude to the organizers for the wonderful and stimulating conference.


  1. 1.
    Berele, A.: Construction of \(\text {Sp}\)-modules by tableaux. Linear Multilinear Algebra 19(4), 299–307 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)Google Scholar
  3. 3.
    Conca, A., Herzog, J., Valla, G.: Sagbi bases with applications to blow-up algebras. J. Reine Angew. Math. 474, 113–138 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    De Concini, C.: Symplectic standard tableaux. Adv. Math. 34(1), 1–27 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Concini, C., Eisenbud, D., Procesi, C.: Hodge Algebras. Astérisque, 91. Société Mathématique de France, Paris 87 pp. (1982)Google Scholar
  6. 6.
    Eisenbud, D.: Introduction to algebras with straightening laws. Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979), Lecture Notes in Pure and Appl Math., vol. 55, pp 243–268. Dekker, New York (1980)Google Scholar
  7. 7.
    Fulton, W.: Young Tableaux. With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)Google Scholar
  8. 8.
    Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.) 71, 825–828 (1950). English translation in Izrail M. Gelfand, Collected papers. Vol. II. Springer, Berlin (1988)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1(3), 215–248 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gonciulea, N., Lakshmibai, V.: Flag Varieties Hermann Éditeurs des Sciences et des Arts (2001)Google Scholar
  11. 11.
    Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  12. 12.
    Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. Commutative Algebra and Combinatorics (Kyoto, 1985), vol. 11, pp 93–109. Adv. Stud. Pure Math., Amsterdam (1987)Google Scholar
  13. 13.
    Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry. Vol. II. Reprint of the 1952 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1994)Google Scholar
  14. 14.
    Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. The Schur lectures (1992) (Tel Aviv), pp. 1–182, Israel Math. Conf Proc., vol. 8. Bar-Ilan Univ., Ramat Gan (1995)Google Scholar
  15. 15.
    Howe, R.: Weyl Chambers and standard monomial theory for poset lattice cones. Q. J. Pure Appl. Math. 1(1), 227–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Howe, R.: Pieri algebras and Hibi algebras in representation theory. Symmetry: Representation Theory and its Applications, pp. 353–384, Progr Math., vol. 257. Birkhäuser/Springer, New York (2014)Google Scholar
  17. 17.
    Howe, R., Lee, S.T.: Why should the Littlewood-Richardson rule be true. Bull. Am. Math. Soc. (N.S.) 49(2), 187–236 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Howe, R., Kim, S., Lee, S.T.: Double Pieri algebras and iterated Pieri algebras for the classical groups. Am. J. Math. 139(2), 347–401 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Howe, R., Kim, S., Lee, S.T.: Standard monomial theory for harmonics in classical invariant theory. Representation Theory, Number Theory and Invariant Theory, pp. 265–302. Progr Math., vol. 323. Birkhäuser/Springer, New York (2017)Google Scholar
  20. 20.
    Kim, S.: Standard monomial theory for flag algebras of \({{{GL}}}(n)\) and \({Sp}(2n)\). J. Algebra 320(2), 534–568 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kim, S.: The nullcone in the multi-vector representation of the symplectic group and related combinatorics. J. Combin. Theory Ser. A 117(8), 1231–1247 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kim, S.: Distributive lattices, affine semigroups, and branching rules of the classical groups. J. Combin. Theory Ser. A 119, 1132–1157 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kim, S.: A presentation of the double Pieri algebra. J. Pure Appl. Algebra 222 (2), 368–381 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kim, S., Lee, S.T.: Pieri algebras for the orthogonal and symplectic groups. Israel J. Math. 195(1), 215–245 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kim, S., Yacobi, O.: A basis for the symplectic group branching algebra. J. Algebraic Combin. 35(2), 269–290 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kim, S., Yoo, S.: Pieri and Littlewood-Richardson rules for two rows and cluster algebra structure. J. Algebraic Combin. 45(3), 887–909 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    King, R.C., El-Sharkaway, N.G.I.: Standard Young tableaux and weight multiplicities of the classical Lie groups. J. Phys. A 16(14), 3153–3177 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kogan, M., Miller, E.: Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes. Adv. Math. 193(1), 1–17 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)Google Scholar
  30. 30.
    Molev, A.I.: Gelfand-Tsetlin bases for classical lie algebras. Handbook of Algebra 4, pp. 109–170, Handb Algebr., vol. 4. Elsevier/North-Holland, Amsterdam (2006)Google Scholar
  31. 31.
    Proctor, R.A.: Young tableaux, Gelfand patterns, and branching rules for classical groups. J. Algebra 164(2), 299–360 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Seshadri, C.S.: Introduction to the Theory of Standard Monomials Texts and Readings in Mathematics, vol. 46. Hindustan Book Agency, New Delhi (2007)Google Scholar
  33. 33.
    Stanley, R.P.: Enumerative combinatorics. Vol. 1. 2nd edition. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (2012)Google Scholar
  34. 34.
    Sturmfels, B.: Algorithms in invariant theory. Texts and Monographs in Symbolic Computation. Springer, Vienna (1993)Google Scholar
  35. 35.
    Wang, Y.: Sign Hibi cones and the anti-row iterated Pieri algebras for the general linear groups. J. Algebra 410, 355–392 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsKorea UniversitySeoulSouth Korea
  2. 2.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations