A New Type of Operator Convexity


Let \(r, s\) be positive numbers. We define a new class of operator \((r, s)\)-convex functions by the following inequality

$$ f \left( \left[\lambda A^{r} + (1-\lambda)B^{r}\right]^{1/r}\right) \leq \left[\lambda f(A)^{s} +(1-\lambda)f(B)^{s}\right]^{1/s}, $$

where \(A, B\) are positive definite matrices and for any \(\lambda \in [0,1]\). We prove the Jensen, Hansen-Pedersen, and Rado type inequalities for such functions. Some equivalent conditions for a function f to become operator \((r, s)\)-convex are established.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ando, T., Hiai, F.: Operator log-convex functions and operator means. Math. Ann. 350(3), 611–630 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Audenaert, K.M.R., Hiai, F.: On matrix inequalities between the power means: counterexamples. Linear Algebra Appl. 439(5), 1590–1604 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Dinh, T.-H, Vo, B.-K.T.: Some inequalities for operator \((p, h)\)-convex functions. Linear Multilinear Algebra 66(3), 580–592 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Gill, P.M., Pearce, C.E.M., Pečarić, J.: Hadamard’s inequality for r-convex functions. J. Math. Anal. Appl. 215(2), 461–470 (1997)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Neumark, M.A.: On a representation of additive operator set functions. Dok. Akad. Nauk SSSR 41(9), 373–375 (1943). (Russian); English translation: C. R. (Doklady) Akad. Sci. URSS (N.S.) 41, 359–361 (1943)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Tikhonov, O.E.: A note on definition of matrix convex functions. Linear Algebra Appl. 416(2–3), 773–775 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Zhang, K.S., Wan, J.P.: p-convex functions and their properties. Pure Appl. Math. (Xi’an) 23(1), 130–133 (2007)

    MathSciNet  MATH  Google Scholar 

Download references


The authors would like to thank Professor Fumio Hiai and the referee for useful comments which improved the quality of the present paper.


Research of the first and the second authors is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 101.02-2017.310.

Author information



Corresponding author

Correspondence to Bich-Khue T. Vo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinh, T., Dinh, T. & Vo, B.T. A New Type of Operator Convexity. Acta Math Vietnam 43, 595–605 (2018). https://doi.org/10.1007/s40306-018-0259-y

Download citation


  • Operator \({(r, \protect s)}\)-convex functions
  • Operator Jensen type inequality
  • Operator Hansen-Pedersen type inequality
  • Operator Rado type inequality

Mathematics Subject Classification (2010)

  • 46L30
  • 15A45
  • 15B57