Negative Index Materials: Some Mathematical Perspectives

Abstract

Negative index materials are artificial structures whose refractive index has a negative value over some frequency range. These materials were postulated and investigated theoretically by Veselago in 1964 and were confirmed experimentally by Shelby, Smith, and Schultz in 2001. New fabrication techniques now allow for the construction of negative index materials at scales that are interesting for applications, which has made them a very active topic of investigation. In this paper, we report various mathematical results on the properties of negative index materials and their applications. The topics discussed herein include superlensing using complementary media, cloaking using complementary media, cloaking an object via anomalous localized resonance, and the well-posedness and the finite speed propagation in media consisting of dispersive metamaterials. Some of the results have been refined and have simpler proofs than the original ones.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    A0 plays the role of A in (1.2).

  2. 2.

    This inequality can be obtained from the following representation of v in \(B_{R_{3}} \setminus B_{R_{1}}\):

    $$v(r, \vartheta) = a_{0} + b_{0} \ln r + \sum\limits_{n = 1}^{\infty} \sum\limits_{\pm} (a_{n, \pm} r^{n} + b_{n, \pm} r^{-n} ) e^{\pm i n \vartheta} \text{ in} \ B_{R_{3}} \setminus B_{R_{1}}. $$

    See also [31, Lemma 6].

  3. 3.

    H− 1(Ω) denotes the dual space of\({H^{1}_{0}}({\Omega })\).

  4. 4.

    Recall that χDdenotes the characteristic function of a subset D of\(\mathbb R^{d}\).

  5. 5.

    Here \(\mathbb C\) denotes the set of complex numbers.

  6. 6.

    Here ⋅ stands for the Euclidean scalar product in \(\mathbb C^{6}\).

  7. 7.

    Here for a 3 × 3 matrix A, we denote A ≤ 0 if Axx ≤ 0 for all \(x \in \mathbb R^{3}\).

References

  1. 1.

    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 17, 35–92 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Abdulle, A., Huber, M.E., Lemaire, S.: An optimization-based numerical method for diffusion problems with sign-changing coefficients. C. R. Math. Acad. Sci. Paris 355, 472–478 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.W.: Anomalous localized resonance using a folded geometry in three dimensions. Proc. R. Soc. Lond. Ser. A 469, 20130048 (2013)

    Article  MATH  Google Scholar 

  4. 4.

    Bethuel, F., Brezis, H., Helein, F.: Ginzburg Landau Vortices. Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser, Boston (1994)

    Google Scholar 

  5. 5.

    Bonnet-Ben Dhia, A.S., Chesnel, L., Ciarlet, P.: T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM Math. Model. Numer. Anal. 46, 1363–1387 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bonnet-Ben Dhia, A.S., Ciarlet, P., Zwölf, C.M.: A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials. Math. Models Methods Appl. Sci. 18, 1605–1631 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bonnetier, E., Nguyen, H.-M.: Superlensing using hyperbolic metamaterials: the scalar case. J. Éc. polytech. Math. 4, 973–1003 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bouchitté, G., Felbacq, D.: Homogenization near resonances and artificial magnetism from dielectrics. C. R. Math. Acad. Sci. Paris 339, 377–382 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bouchitté, G., Schweizer, B.: Cloaking of small objects by anomalous localized resonance. Quart. J. Mech. Appl. Math. 63, 437–463 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Chen, Y., Lipton, R.: Resonance and double negative behavior in metamaterials. Arch. Ration. Mech. Anal. 209, 835–868 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  13. 13.

    Gralak, B., Tip, A.: Macroscopic Maxwell’s equations and negative index materials. J. Math. Phys. 51, 052902 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Guenneau, S., Zolla, F.: Homogenization of 3D finite chiral photonic crystals. Phys. B: Condens. Matter 394, 145–147 (2007)

    Article  MATH  Google Scholar 

  15. 15.

    Jackson, J.D.: Classical Electrodynamics. Wiley, NY (1999)

    Google Scholar 

  16. 16.

    Cassier, M., Hazard, C., Joly, P.: Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part I: generalized Fourier transform. Comm. Partial Diff. Equat. 42(11), 1707–1748 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kohn, R.V., Lu, J., Schweizer, B., Weinstein, M.I.: A variational perspective on cloaking by anomalous localized resonance. Comm. Math. Phys. 328, 1–27 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Kohn, R.V., Shipman, S.P.: Magnetism and homogenization of microresonators. Multiscale Model Simul. 7, 62–92 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Lai, Y., Chen, H., Zhang, Z.Q., Chan, C.T.: Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009)

    Article  Google Scholar 

  20. 20.

    Milton, G.W., Nicorovici, N.A., McPhedran, R.C., Podolskiy, V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. Lond. Ser. A 461, 3999–4034 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Milton, G.W., Nicorovici, N.A.P.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lond. Ser. A 462, 3027–3059 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Nguyen, H.-M.: Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients. Trans. Am. Math. Soc. 367, 6581–6595 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Nguyen, H.-M.: Superlensing using complementary media. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 471–484 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Nguyen, H.-M.: Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime. J. Eur. Math. Soc. (JEMS) 17, 1327–1365 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Nguyen, H.-M.: Cloaking using complementary media in the quasistatic regime. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1509–1518 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Nguyen, H.-M.: Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients. J. Math. Pures Appl. 106, 342–374 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Nguyen, H.-M.: Negative index materials and their applications: recent mathematics progress. Chin. Ann. Math. Ser. B 38, 601–628 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Nguyen, H.-M.: Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object. SIAM J. Math. Anal. 49, 3208–3232 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Nguyen, H.-M.: Superlensing using complementary media and reflecting complementary media for electromagnetic waves. Adv. Nonlinear Anal. to appear, https://doi.org/10.1515/anona-2017-0146

  30. 30.

    Nguyen, H.-M.: Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime. J. Anal. Math. to appear, arXiv:1511.08053

  31. 31.

    Nguyen, H.-M.: Cloaking using complementary media for electromagnetic waves. ESAIM Control Optim. Calc. Var., to appear, https://doi.org/10.1051/cocv/2017078

  32. 32.

    Nguyen, H.-M., Nguyen, H.L.: Complete resonance and localized resonance in plasmonic structures. ESAIM: Math. Model. Numer. Anal. 49, 741–754 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Nguyen, H.-M., Nguyen, H.L.: Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations. Trans. Am. Math. Soc. Ser. B 2, 93–112 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Nguyen, H.-M., Vinoles, V.: Electromagnetic wave propagation in dispersive metamaterials. submitted, arXiv:1710.08648

  35. 35.

    Nguyen, H.-M., Nguyen, L.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles for the full wave equation: the scalar case. Math. Models Methods Appl. Sci. 25, 1927–1960 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Nguyen, H.-M., Vogelius, M.S.: Approximate cloaking for the full wave equation via change of variables: the Drude-Lorentz model. J. Math. Pures Appl. 106, 797–836 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Nicorovici, N.A., McPhedran, R.C., Milton, G.M.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994)

    Article  Google Scholar 

  38. 38.

    Ola, P.: Remarks on a transmission problem. J. Math. Anal. Appl. 16, 639–658 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  Google Scholar 

  40. 40.

    Pendry, J.B.: Perfect cylindrical lenses. Opt. Express 1, 755–760 (2003)

    Article  Google Scholar 

  41. 41.

    Protter, M.H.: Unique continuation for elliptic equations. Trans. Am. Math. Soc. 95, 81–91 (1960)

    MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    Ramakrishna, S.A., Pendry, J.B.: Focusing light using negative refraction. J. Phys. Condens. Matter 15, 6345–6364 (2003)

    Article  Google Scholar 

  43. 43.

    Ramakrishna, S.A., Pendry, J.B.: Spherical perfect lens: solutions of Maxwell’s equations for spherical geometry. Phys. Rev. B 69, 115115 (2004)

    Article  Google Scholar 

  44. 44.

    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental Verification of a Negative Index of Refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  45. 45.

    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of 𝜖 and μ. Usp. Fiz. Nauk 92, 517–526 (1964)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is an extended version of the lecture given by the author at VIASM annual meeting in 2017 at Vietnam Institute for Advanced Study in Mathematics. The author warmly thanks the institute for the hospitality.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hoai-Minh Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lecture at the Annual Meeting 2017 of the Vietnam Institute for Advanced Study in Mathematics

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H. Negative Index Materials: Some Mathematical Perspectives. Acta Math Vietnam 44, 325–349 (2019). https://doi.org/10.1007/s40306-018-0258-z

Download citation

Keywords

  • Superlensing
  • Cloaking
  • Finite speed propagation
  • Complementary media
  • Negative index metamaterials.

Mathematics Subject Classification (2010)

  • 35B34
  • 35B35
  • 35J05
  • 35Q60.