Acta Mathematica Vietnamica

, Volume 44, Issue 2, pp 501–517 | Cite as

The Einstein-Vlasov-Scalar Field System with Gowdy or T2 Symmetry in Contracting Direction

  • Alex Lassiye Tchuani
  • David TegankongEmail author
  • Norbert Noutchegueme


We prove in the case of cosmological models for the Einstein-Vlasov-scalar field system with Gowdy symmetry, that the solutions exist globally in the past. The sources of the equations are generated by a distribution function and a scalar field, subject to the Vlasov and the wave equations respectively. The result is generalized for the case of T2 symmetry. Using previous results, we deduce geodesic completeness.


Einstein Vlasov Scalar field Gowdy symmetry T2 symmetry Hyperbolic differential equations Global existence Geodesic completeness 

Mathematics Subject Classification (2010)

83C20 83C22 34B05 



Comments of the anonymous referee are gratefully acknowledged by the authors.


  1. 1.
    Andréasson, H.: Global foliations of matter spacetimes with Gowdy symmetry. Comm. Math. Phys. 206(2), 337–365 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andréasson, H., Rein, G., Rendall, A.D.: On the Einstein-Vlasov system with hyperbolic symmetry. Math. Proc. Cambridge Philos. Soc. 124(3), 529–549 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berger, B.K., Chruściel, P., Isenberg, J., Moncrief, V.: Global foliations of vacuum spacetimes with T 2 isometry. Ann. Phys. 260(1), 117–148 (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ehlers, J. In: Israel, W. (ed.) : A Survey of General Relativity Theory Astrophysics and Cosmology, pp 1–125. Reidel, Dordrecht (1973)Google Scholar
  5. 5.
    Choquet-Bruhat, Y.: Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. Ann. Inst. Fourier 21(3), 181–201 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys. 14, 329–335 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chruściel, P.T.: On space-times with U(1)× U(1) symmetric compact Cauchy surfaces. Ann. Phys. 202(1), 100–150 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gowdy, R.H.: Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions. Ann. Phys. 83, 203–241 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ringström, H.: Future stability of the Einstein non-linear scalar field system. Invent. Math. 173(1), 123–208 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Straumann, N.: On the cosmological constant problems and the astronomical evidence for a homogeneous energy density with negative pressure. In: Duplantier, B., Rivasseau, V. (eds.) Vaccum Energy-Renormalization, Poincaré Seminar. Birkhauser, Basel (2002)Google Scholar
  11. 11.
    Smulevici, J.: On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry. Anal. PDE. 4(2), 191–245 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tegankong, D.: On the area of the symmetry orbits of the Einstein-Vlasov-scalar field system with plane and hyperbolic symmetry. J. Inform. Math. Sci. 5(3), 131–142 (2013)Google Scholar
  13. 13.
    Tegankong, D., Rendall, A.D.: On the nature of initial singularities for solutions of the Einstein-Vlasov-scalar field system with surface symmetry. Math. Proc. Cambridge Philos. Soc. 141(3), 547–562 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tegankong, D.: The Einstein-Vlasov-scalar field system with Gowdy symmetry in the expanding direction. Classical Quantum Gravity 31, 18pp (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Weaver, M.: On the area of the symmetry orbits in T 2 symmetric spacetimes with Vlasov matter. Classical Quantum Gravity 21 (4), 1079–1097 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Alex Lassiye Tchuani
    • 1
  • David Tegankong
    • 2
    Email author
  • Norbert Noutchegueme
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceUniversity of Yaounde 1YaoundeCameroon
  2. 2.Department of Mathematics, ENSUniversity of Yaounde 1YaoundeCameroon

Personalised recommendations