Advertisement

Acta Mathematica Vietnamica

, Volume 43, Issue 3, pp 549–563 | Cite as

Approximation Properties of Generalized Szász-Type Operators

  • Arun Kajla
Article
  • 109 Downloads

Abstract

In the present paper, we study some approximation properties of the generalized Szász type operators introduced by V. Miheşan (Creat. Math. Inf. 17:466–472, 2008). We present a quantitative Voronovskaya-type theorem, local approximation theorem by means of second-order modulus of continuity and weighted approximation for these operators. The rate of convergence for differential functions whose derivatives are of bounded variation is also obtained.

Keywords

Positive approximation process Rate of convergence Modulus of continuity Steklov mean 

Mathematics Subject Classification (2010)

41A25 26A15 

Notes

Acknowledgements

The author wishes to thank the referee for her/his suggestions which definitely improved the final form of this paper.

References

  1. 1.
    Acar, T.: Approximation by bivariate (p,q)-Baskakov-Kantorovich operators. Georgian Math. J. 23, 459–468 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Acar, T.: Rate of convergence for Ibragimov-Gadjiev-Durrmeyer operators. Demonstr. Math. 50(1), 119–129 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Acar, T.: (p, q)-generalization of szász-mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Acar, T.: Asymptotic formulas for generalized szász-mirakyan operators. Appl. Math. Comput. 263, 233–239 (2015)MathSciNetGoogle Scholar
  5. 5.
    Acar, T., Ulusoy, G.: Approximation by modified szász-durrmeyer operators. Period. Math. Hungar. 72(1), 64–75 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Acar, T., Gupta, V., Aral, A.: Rate of convergence for generalized szász operators. Bull. Math. Sci. 1(1), 99–113 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Agrawal, P.N., Gupta, V., Sathish Kumar, A., Kajla, A.: Generalized baskakov-szász type operators. Appl. Math. Comput. 236, 311–324 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Aral, A.: A generalization of szász-mirakyan operators based on q-integers. Math. Comput. Model. 47(9-10), 1052–1062 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Aral, A., Inoan, D., Raşa, I.: On the generalized szász-mirakyan operators. Results Math. 65(3-4), 441–452 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Atakut, Ç., İspir, N.: Approximation by modified szász-mirakjan operators on weighted spaces. Proc. Indian Acad. Sci. Math. Sci. 112(4), 571–578 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Baskakov, V.A.: A sequence of linear positive operators in the space of continuous functions. Dokl. Acad. Nauk. SSSR 113, 249–251 (1957)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bernstein, S.N.: Demonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 13(2), 1–2 (Unknown Month 1912)zbMATHGoogle Scholar
  13. 13.
    Cárdenas-Morales, D., Gupta, V.: Two families of Bernstein-Durrmeyer type operators. Appl. Math. Comput. 248, 342–353 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ciupa, A.: On a generalized favard-szász type operator. Research Seminar on Numerical and Statistical Calculus, Univ. Babeş, Bolyai Cluj-Napoca, preprint 1, 33–38 (1994)Google Scholar
  15. 15.
    Finta, Z., Govil, N.K., Gupta, V.: Some results on modified szász-mirakjan operators. J. Math. Anal. Appl. 327(2), 1284–1296 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gadžiev, A.D.: Theorems of the type of P. P. Korovkin’s theorems. Math. Zametki 20(5), 781–786 (1976)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gupta, V., Agarwal, R.P.: Convergence estimates in approximation theory. Springer, Cham (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    İbikli, E., Gadjieva, E.A.: The order of approximation of some unbounded function by the sequences of positive linear operators. Turkish J. Math. 19(3), 331–337 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    İspir, N.: Rate of convergence of generalized rational type Baskakov operators. Math. Comput. Modelling 46(5-6), 625–631 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kajla, A., Agrawal, P.N.: Szász-durrmeyer type operators based on Charlier polynomials. Appl. Math. Comput. 268, 1001–1014 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kajla, A., Acu, A.M., Agrawal, P.N.: Baskakov-szász type operators based on inverse pólya-eggenberger distribution. Ann. Funct. Anal. 8(1), 106–123 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kajla, A., Agrawal, P.N.: Approximation properties of szász type operators based on Charlier polynomials. Turkish J. Math. 39(6), 990–1003 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Karsli, H.: Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation. Math. Comput. Modelling 45(5-6), 617–624 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kasana, H.S., Prasad, G., Agrawal, P.N., Sahai, A.: Modified Szasz operators. Proceedings of Conf. on Math. Anal. Appl., Kuwait, 1985, Pergamon, Oxford, 29-42 (1988)Google Scholar
  25. 25.
    Lupaş, A.: The approximation by means of some linear positive operators. In: Müller, M.W., Felten, M., Mache, D.H. (eds.) Approximation theory, Proceedings of the International Dortmund Meeting on Approximation Theory, Berlin, Germany, 1995 (1995)Google Scholar
  26. 26.
    Miheşan, V.: Gamma approximating operators. Creat. Math. Inform. 17(3), 466–472 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mazhar, S.M., Totik, V.: Approximation by modified szász operators. Acta Sci. Math. 49(1-4), 257–269 (1985)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Özarslan, M.A., Aktuǧlu, H.: Local approximation properties for certain King type operators. Filomat 27(1), 173–181 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Özarslan, M.A., Duman, O., Kaanoǧlu, C.: Rates of convergence of certain King-type operators for functions with derivative of bounded variation. Math. Comput. Modelling 52(1-2), 334–345 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sucu, S.: Dunkl analogue of szász operators. Appl. Math. Comput. 244, 42–48 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, 239–245 (1950)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Varma, S., Taşdelen, F.: Szász type operators involving Charlier polynomials. Math. Comput. Modelling 56(5-6), 118–122 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yüksel, I., Ispir, N.: Weighted approximation by a certain family of summation integral-type operators. Comput. Math. Appl. 52(10-11), 1463–1470 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsCentral University of HaryanaHaryanaIndia

Personalised recommendations