Codes Induced by Alternative Codes


Alternative codes, an extension of the notion of ordinary codes, have been first introduced and considered by Huy and Nam (2004). As seen below, every alternative code, in its turn, defines an ordinary code. Such codes are called codes induced by alternative codes or alt-induced codes, for short. In this paper, we consider these alt-induced codes and subclasses of them. In particular, characteristic properties of such codes are established, and an algorithm to check whether a finite code is alt-induced or not is proposed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)

    Google Scholar 

  2. 2.

    Biegler, F., Daley, M., McQuillan, I.: Algorithmic decomposition of shuffle on words. Theor. Comput. Sci. 454, 38–50 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Han, N.D., Huy, P.T.: On unambiguity of languages related to codes. In: James, J.P., Victor, C.M.L., Cho, L.W., Taeshik, S. (eds.) Future Information Technology, Application, and Service, pp 32–38. Springer, Netherlands (2012)

  4. 4.

    Han, Y.S., Salomaa, A., Salomaa, K., Wood, D., Yu, S.: On the existence of prime decompositions. Theor. Comput. Sci. 376, 60–69 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Hien, N.T.: Characterizations for several classes of alternative codes. J. Comput. Sci. Cybern. 32, 273–283 (2016)

    Google Scholar 

  6. 6.

    Hung, K.V., Van, D.L.: Prime decomposition problem for several kinds of regular codes. Lec. Notes Comput. Sci. 4281, 213–227 (2006)

  7. 7.

    Huy, P.T., Nam, V.T.: Alternative codes and pre-context codes. The 7th National conference: Selected problems about IT and Telecommunication, pp. 188–197. (in Vietnamese) (2004)

  8. 8.

    Jastrzab, T., Czech, Z.J.: A parallel algorithm for the decomposition of finite languages. Stud. Informatica 34, 5–16 (2014)

    Google Scholar 

  9. 9.

    Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp 511–607. Springer, Berlin (1997)

  10. 10.

    Mollin, R.A.: Fundamental Number Theory with Applications. 2nd edn. Chapman & Hall/CRC, Boca Raton (2008)

  11. 11.

    Sardinas, A.A., Patterson, C.W.: A necessary and sufficient condition for the unique decomposition of coded messages. IRE Int. Conv. Rec. 8, 104–108 (1953)

    Google Scholar 

  12. 12.

    Schützenberger, M. P.: On a question concerning certain free submonoids. J. Comb. Theory 1, 437–442 (1966)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Shyr, H.J.: Free Monoids and Languages. Hon Min Book Company, Taichung (1991)

    Google Scholar 

  14. 14.

    Vinh, H.N., Nam, V.T., Huy, P.T.: Codes based on unambiguous products. Lect. Notes Comput. Sci. 6423, 252–262 (2010)

    Article  Google Scholar 

  15. 15.

    Wieczorek, W.: An algorithm for the decomposition of finite languages. Log. J. IGPL 18, 355–366 (2010)

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors would like to thank the colleagues in the Seminar on Mathematical Foundation of Computer Science at Institute of Mathematics, Vietnam Academy of Science and Technology for attention to this work. Especially, the authors express their sincere thanks to Dr. Nguyen Huong Lam and Dr. Kieu Van Hung for their useful discussions.

Author information



Corresponding author

Correspondence to Ngo Thi Hien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hien, N.T., Van, D.L. Codes Induced by Alternative Codes. Acta Math Vietnam 43, 357–371 (2018).

Download citation


  • Code
  • Alt-induced code
  • Strong alt-induced code
  • Alternative code
  • Strong alternative code

Mathematics Subject Classification (2010)

  • 94A45
  • 68Q45