Acta Mathematica Vietnamica

, Volume 43, Issue 3, pp 565–574 | Cite as

Cofiniteness of Local Cohomology Modules over Homomorphic Image of Cohen-Macaulay Rings

  • Asghar Farokhi
  • Alireza Nazari


Let \((R,\mathfrak {m})\) be a Noetherian local ring, M a non-zero finitely generated R-module, and let I be an ideal of R. In this paper, we establish some new properties of local cohomology modules \(\mathrm {H}^{i}_{I}(M)\), i ≥ 0. In particular, we show that if R is catenary, M an equidimensional R-module of dimension d, and \(x_{1},x_{2},\dots ,x_{t}\) is an I-filter regular sequence on M, then \((0:_{\mathrm {H}^{d-j}_{I}(\frac {M}{\langle x_{1},x_{2},\dots ,x_{i-1}\rangle M})} x_{i})\) is I-cofinite for all \(i = 1,2,\dots ,t\) and all ijt if and only if \(\mathrm {H}^{d-j}_{I}(\frac {M}{\langle x_{1},x_{2},\dots ,x_{i-1}\rangle M})\) is I-cofinite for all \(i = 1,2,\dots ,t\) and all ijt. Also we study the cofiniteness of local cohomology modules over homomorphic image of Cohen-Macaulay rings and we show that \(\frac {\mathrm {H}^{\mathcal {W}(I,M)}_{I}(M)}{I\mathrm {H}^{\mathcal {W}(I,M)}_{I}(M)}\) has finite support, where

$$\mathcal{W}(I,M) := \text{Max} \{i : \mathrm{H}^{i}_{I}(M) \text{~is not weakly Laskerian}\}. $$


Weakly Laskerian modules Cofinite modules Local cohomology 

Mathematics Subject Classification (2010)

13D45 14B15 13E05 



The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions.


  1. 1.
    Aghapournahr, M., Melkersson, L.: Finiteness properties of minimax and coatomic local cohomology modules. Arch. Math. 94, 519–528 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bagheriyeh, I., Azami, J., Bahmanpour, K.: Generalization of the Lichtenbaum-Hartshorne vanishing theorem. Comm. Algebra 40, 134–137 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bagheriyeh, I., Bahmanpour, K., Azami, J.: Cofiniteness and non-vanishing of local cohomology modules. J. Commut. Algebra 6(3), 305–321 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bahmanpour, K.: On the category of weakly Laskerian cofinite modules. Math. Scand. 115, 62–68 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brodmann, M.P., Sharp, R.Y.: Local Cohomology: an Algebraic Introduction with Geometric Applications. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Brodmann, M.P., Sharp, R.Y.: On the dimension and multiplicity of local cohomology modules. Nagoya Math. J. 167, 217–233 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra. 121, 45–52 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules. Comm. Algebra 34, 681–690 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Huneke, C.: Problems on local cohomology, free resolutions in commutative algebra and algebraic geometry. Res. Notes Math. 2, 93–108 (1992)MATHGoogle Scholar
  10. 10.
    Marley, T., Vassilev, J.C.: Cofiniteness and associated primes of local cohomology modules. J. Algebra 256, 180–193 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  12. 12.
    Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285, 649–668 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Quy, P.H.: On the finiteness of associated primes of local cohomology modules. Proc. Am. Math. Soc. 138, 1965–1968 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Vasconcelos, W.: Divisor Theory in Module Categories. North-Holland, Amsterdam (1974)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Mathematical SciencesLorestan UniversityKhorram AbadIran

Personalised recommendations