Skip to main content

Complex Monge-Ampère Equation in Strictly Pseudoconvex Domains


We study the complex Monge-Ampère equation (ddcu)n = μ in a strictly pseudoconvex domain Ω with the boundary condition u = φ, where φC(Ω). We provide a nontrivial sufficient condition for continuity of the solution u outside “small sets”.

This is a preview of subscription content, access via your institution.


  1. Åhag, P.: A Dirichlet problem for the complex monge-ampère operator in \(\mathcal {F}(f)\). Michigan Math. J. 55(1), 123–138 (2007)

    MathSciNet  Article  Google Scholar 

  2. Åhag, P., Cegrell, U., CzyŻ, R., Pham, H.-H.: Monge-Ampère measures on pluripolar sets. J. Math. Pures Appl. (9) 92(6), 613–627 (2009)

    MathSciNet  Article  Google Scholar 

  3. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37(1), 1–44 (1976)

    MathSciNet  Article  Google Scholar 

  4. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1–2), 1–40 (1982)

    MathSciNet  Article  Google Scholar 

  5. Bedford, E.: Survey of Pluri-Potential theory. Several complex variables (Stockholm, 1987/1988), 48–97, Math Notes, vol. 38. Princeton University Press, Princeton (1993)

    Google Scholar 

  6. Blocki, Z.: The domain of definition of the complex Monge-Ampère operator. Am. J. Math. 128(2), 519–530 (2006)

    Article  Google Scholar 

  7. Blocki, Z.: Remark on the Definition of the Complex Monge-Ampère Operator. Functional Analysis and Complex Analysis, 17–21, Contemp Math. 481. American Mathematical Society, Providence (2009)

    Google Scholar 

  8. Cegrell, U: Pluricomplex energy. Acta Math. 180(2), 187–217 (1998)

    MathSciNet  Article  Google Scholar 

  9. Cegrell, U: The general definition of the complex Monge-Ampère operator. (English, French summary). Ann. Inst. Fourier (Grenoble) 54(1), 159–179 (2004)

    MathSciNet  Article  Google Scholar 

  10. Huybrechts, D.: Complex Geometry. Universitext. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Klimek, M.: Pluripotential Theory. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  12. Kolodziej, S.: The complex Monge-Ampère equation. Acta Math. 180(1), 69–117 (1998)

    MathSciNet  Article  Google Scholar 

  13. Kolodziej, S.: The complex Monge-Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178(840), x + 64 pp. (2005)

    MATH  Google Scholar 

  14. Nguyen, V.K., Pham, H.-H.: A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications. Trans. Am. Math. Soc. 361(10), 5539–5554 (2009)

    Article  Google Scholar 

Download references


This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 101.02-2017.306.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hoang-Son Do.

Additional information

In honor of Lê Văn Thiêm’s centenary

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Do, HS., Do, T.D. & Pham, H.H. Complex Monge-Ampère Equation in Strictly Pseudoconvex Domains. Acta Math Vietnam 45, 93–101 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Monge-Ampère equation
  • Pseudoconvex domains
  • Hyperconvex domain

Mathematics Subject Classification (2010)

  • 32U15
  • 32T15
  • 32W20