On the Annihilator Submodules and the Annihilator Essential Graph

Abstract

Let R be a commutative ring and let M be an R-module. For aR, AnnM(a) = {mM : am = 0} is said to be an annihilator submodule of M. In this paper, we study the property of being prime or essential for annihilator submodules of M. Also, we introduce the annihilator essential graph of equivalence classes of zero divisors of M, AER(M), which is constructed from classes of zero divisors, determined by annihilator submodules of M and distinct vertices [a] and [b] are adjacent whenever AnnM(a) + AnnM(b) is an essential submodule of M. Among other things, we determine when AER(M) is a connected graph, a star graph, or a complete graph. We compare the clique number of AER(M) and the cardinal of m −AssR(M).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    El-Bast, Z.A., Smith, P.F.: Multiplication modules. Comm. Algebra 16(4), 755–779 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Anderson, D.F., LaGrange, J.D.: Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph. J. Pure Appl. Algebra 216(7), 1626–1636 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217(2), 434–447 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Anderson, D.D., Chun, S.: The set of torsion elements of a module. Comm. Algebra 42(4), 1835–1843 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Badawi, A.: On the annihilator graph of a commutative ring. Comm. Algebra 42(1), 108–121 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Beck, I.: Coloring of commutative rings. J. Algebra 116(1), 208–226 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Coykendall, J., Sather-Wagstaff, S., Sheppardson, L., Spiroff, S.: On Zero Divisor Graphs Progress in Commutative Algebra, vol. II. Walter de Gruyter, Berlin (2012)

    Google Scholar 

  8. 8.

    Lu, C.-P.: Unions of prime submodules. Houston J. Math. 23(2), 203–213 (1997)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    McCasland, R.L., Moore, M.E., Smith, P.F.: On the spectrum of a module over a commutative ring. Comm. Algebra 25(1), 79–103 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Mulay, S.B.: Cycles and symmetries of zero-divisors. Comm. Algebra 30(7), 3533–3558 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Spiroff, S., Wickham, C.: A zero divisor graph determine by equivalence classes of zero divisors. Comm. Algebra 39(7), 2338–2348 (2011)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for a careful reading of our article and insightful comments which saved us from several errors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiroyeh Payrovi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babaei, S., Payrovi, S. & Sevim, E.S. On the Annihilator Submodules and the Annihilator Essential Graph. Acta Math Vietnam 44, 905–914 (2019). https://doi.org/10.1007/s40306-018-00306-1

Download citation

Keywords

  • Annihilator submodule
  • Annihilator essential graph
  • Zero divisor graph

Mathematics Subject Classification (2010)

  • 13A15
  • 05C99