Acta Mathematica Vietnamica

, Volume 44, Issue 1, pp 51–64 | Cite as

Cohen-Macaulay Criteria for Projective Monomial Curves via Gröbner Bases

  • Jürgen HerzogEmail author
  • Dumitru I. Stamate


We prove new characterizations based on Gröbner bases for the Cohen-Macaulay property of a projective monomial curve.


Arithmetically Cohen-Macaulay Projective monomial curve Revlex Gröbner basis Numerical semigroup Apéry set 

Mathematics Subject Classification (2010)

Primary 13H10 13P10 16S36 Secondary 13F20 14M25 



We gratefully acknowledge the use of the Singular [8] software for our computations.

Funding Information

Dumitru Stamate was supported by the University of Bucharest, Faculty of Mathematics and Computer Science, through the 2017 Mobility Fund.


  1. 1.
    Arslan, F.: Cohen-Macaulayness of tangent cones. Proc. Am. Math. Soc. 128(8), 2243–2251 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arslan, F., Mete, P., Şahin, M.: Gluing and Hilbert functions of monomial curves. Proc. Am. Math. Soc. 137(7), 2225–2232 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bresinsky, H.: On prime ideals with generic zero \(x_{i}=t^{n_{i}}\). Proc. Am. Math. Soc. 47, 329–332 (1975)zbMATHGoogle Scholar
  4. 4.
    Bresinsky, H., Schenzel, P., Vogel, W.: On liaison, arithmetical Buchsbaum curves and monomial curves in \(\mathbb {P}^{3}\). J. Algebra 86(2), 283–301 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cavaliere, M. P., Niesi, G.: On monomial curves and Cohen-Macaulay type. Manuscripta Math. 42(2–3), 147–159 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cimpoeaş, M., Stamate, D.I.: Gröbner–nice pairs of ideals. Preprint (2018)Google Scholar
  7. 7.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)Google Scholar
  8. 8.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 — a computer algebra system for polynomial computations. (2012)
  9. 9.
    Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  10. 10.
    Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra Graduate Studies in Mathematics, vol. 130. American Medical Association, Providence (2012)zbMATHGoogle Scholar
  11. 11.
    Goto, S., Suzuki, N., Watanabe, K.-I.: On affine semigroup rings. Japan J. Math. (N.S.) 2(1), 1–12 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Herzog, J.: Generators and relations of Abelian semigroups and semigroup rings. Manuscripta Math. 3, 175–193 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herzog, J., Hibi, T.: Monomial Ideals Graduate Texts in Mathematics, vol. 260. Springer, London (2011)Google Scholar
  14. 14.
    Herzog, J., Stamate, D.I.: On the defining equations of the tangent cone of a numerical semigroup ring. J. Algebra 418, 8–28 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kamoi, Y.: Defining ideals of Cohen-Macaulay semigroup rings. Commun. Algo. 20(11), 3163–3189 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kamoi, Y.: Defining ideals of Buchsbaum semigroup rings. Nagoya Math. J. 136, 115–131 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morales, M., Dung, N.T.: Gröbner basis, a “pseudo-polynomial” algorithm for computing the Frobenius number. Preprint. arXiv:1510.01973 [math.AC] (2015)
  18. 18.
    Roune, B. H.: Solving thousand-digit Frobenius problems using Gröbner bases. J. Symb. Comput. 43(1), 1–7 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rosales, J. C., García-Sánchez, P. A., Urbano-Blanco, J. M.: On Cohen-Macaulay subsemigroups of \(\mathbb {N}^{2}\). Comm. Algebra 26(8), 2543–2558 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vu, T.: Periodicity of Betti numbers of monomial curves. J. Algebra 418, 66–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität Duisburg-EssenEssenGermany
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations