Advertisement

Acta Mathematica Vietnamica

, Volume 43, Issue 3, pp 485–501 | Cite as

New Stability Criteria for Nonlinear Volterra Integro-Differential Equations

  • Pham Huu Anh Ngoc
  • Tran The Anh
Article
  • 196 Downloads

Abstract

Using a novel approach, we present some new explicit criteria for the uniform asymptotic stability and the exponential stability of nonlinear Volterra integro-differential equations. Some examples are given to illustrate the obtained results.

Keywords

Nonlinear Volterra integro-differential equations Uniform asymptotically stability Exponential stability 

Mathematics Subject Classification (2010)

45J05 34D20 

Notes

Acknowledgements

The authors would like to thank the referee for carefully reading the manuscript and some constructive suggestions.

Funding Information

This work is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant 101.01-2016.09.

References

  1. 1.
    Anh, T.T., Ngoc, P.H.A.: New stability criteria for linear Volterra time-varying integro-differential equations. Taiwan. J. Math. 21, 841–863 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Appleby, J.A.D., Reynolds, D.W.: On necessary and sufficient conditions for exponential stability in linear Volterra integro-differential equations. J. Int. Equa. Appl. 16, 221–240 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Becker, L.C.: Function bounds for solutions of Volterra equations and exponential asymptotic stability. Non. Anal. 67, 382–397 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in Mathematical Sciences. Academic Press, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Brauer, F.: Asymptotic stability of a class of integro-differential equations. J. Differ. Equa. 28, 180–188 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burton, T.A., Mahfoud, W.A.: Stability criteria for Volterra equations. Trans. Am. Math. Soc. 279, 143–174 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Burton, T.A.: Volterra Integral and Differential Equations. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  8. 8.
    Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1988)zbMATHGoogle Scholar
  9. 9.
    Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-output Properties. Academic, New York (1975)zbMATHGoogle Scholar
  10. 10.
    Driver, R.D.: Existence and stability of solutions of a delay differential system. Arch. Ration. Mech. Anal. 10, 401–426 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Elaydi, S., Sivasundaram, S.: A unified approach to stability in integro-differential equations via Liapunov functions. J. Math. Anal. Appl. 144, 503–531 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grossman, G.S., Miller, R.K.: Nonlinear Volterra integro-differential system with L 1-kernels. J. Differ. Equa. 13, 551–566 (1973)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hara, T., Yoneyama, T., Itoh, T.: Asymptotic stability criteria for nonlinear volterra integro-differential equations. Funkcialaj Ekvacioj 33, 39–57 (1990)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hara, T.: Exponential asymptotic stability for Volterra integro-differential equations of nonconvolution type. Funkcialaj Ekvacioj 37, 373–382 (1994)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hino, Y., Murakami, S.: Stability properties of linear Volterra equations. J. Differ. Equa. 89, 121–137 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hino, Y., Murakami, S.: Total stability and uniform asymptotic stability for linear Volterra equations. J. Lond. Math. Sot. 43, 305–312 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hino, Y., Murakami, S.: Stabilities in linear integro-differential Equations. Lect. Notes Numer. Appl. Anal. 15, 31–46 (1996)zbMATHGoogle Scholar
  18. 18.
    Miller, R.K.: Asymptotic stability properties of Volterra integro-differential systems. J. Differ. Equa. 10, 485–506 (1971)CrossRefzbMATHGoogle Scholar
  19. 19.
    Murakami, S.: Exponential asymptotic stability of scalar linear Volterra equations. Differ. Int. Equa. 4, 519–525 (1991)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ngoc, P.H.A.: On positivity and stability of linear Volterra systems with delay. SIAM. J. Control Optim. 48, 1939–1960 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ngoc, P.H.A., Naito, T., Shin, J.S., Murakami, S.: On stability and robust stability of positive linear Volterra equations. SIAM J. Control Optim. 47, 975–996 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vanualailai, J., Nakagiri, S.: Stability of a systems of Volterra integro-differential equations. J. Math. Anal. Appl. 281, 602–619 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang, B.: Asymptotic stability criteria and integrability properties of the resolvent of Volterra and functional equations. Funkcialaj Ekvacioj 40, 335–351 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhang, B.: Necessary and sufficient conditions for stability in Volterra equations of nonconvolution type. Dyn. Syst. Appl. 14, 525–550 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mathematics, International UniversityVietnam National University-HCMCSaigonVietnam
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of Science, Vietnam National University-HCMCSaigonVietnam
  3. 3.Department of Natural Science and TechnologyUniversity of Khanh HoaNha TrangVietnam

Personalised recommendations