A Note on Maximal Subextensions of Plurisubharmonic Functions

Abstract

In this paper, we consider subextensions of plurisubharmonic functions on bounded hyperconvex domains. Under some conditions, we prove the convergence in capacity of maximal subextensions with given boundary values.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Åhag, P., Cegrell, U., CzyŻ, R., Hiep, P.H.: Monge-Ampè,re measures on pluripolar sets. J. Math. Pures Appl. 92, 613–627 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bedford, E., Taylor, B.A.: Smooth plurisubharmonic functions without subextension. Math. Z. 198(3), 331–337 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54(1), 159–179 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Cegrell, U.: A general Dirichlet problem for the complex Monge-Ampère operator. Ann. Polon. Math. 94, 131–147 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cegrell, U.: Convergence in capacity. Canad. Math. Bull. 55(2), 242–248 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Cegrell, U., Kołodziej, S., Zeriahi, A.: Maximal subextensions of plurisubharmonic functions. Ann. Fac. Sci. Toulouse Math. (6) 20, 101–122 (2011). Fascicule Spécial

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Cegrell, U., Zeriahi, A.: Subextension of plurisubharmonic functions with bounded Monge-Ampère mass. C. R. Acad. Sci. Paris 336, 305–308 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    CzyŻ, R., Hed, L.: Subextension of plurisubharmonic functions without increasing the total Monge-Ampère mass. Ann. Polon. Math. 94(3), 275–281 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    El Mir, H.: Fonctions plurisousharmoniques et ensembles pluripolaires. Seminaire Lelong-Skoda, Lecture Notes in Math. vol. 822, pp. 61–76 Springer-Verlarg (1980)

  11. 11.

    Hiep, P.H.: Pluripolar sets and the subextension in Cegrell’s classes. Complex Var. Elliptic Equ. 53(7), 675–684 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Hiep, P.H.: Convergence in capacity and applications. Math. Scand. 107, 90–102 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Hong, N.X.: Monge-Ampère measures of maximal subextensions of plurisubharmonic functions with given boundary values. Complex Var. Elliptic Equ. 60(3), 429–435 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Hong, N.X.: Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions. C. R. Acad. Sci. Paris, Ser. I(355), 487–492 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Hong, N.X.: Range of the complex Monge-Ampère operator on plurifinely domain. Complex Var Elliptic Equ. https://doi.org/10.1080/17476933.2017.1325476 (2017)

  16. 16.

    Hong, N.X., Hai, L.M., Viet, H.: Local maximality for bounded plurifinely plurisubharmonic functions. Potential Anal. https://doi.org/10.1007/s11118-017-9630-1(2017)

  17. 17.

    Hong, N.X., Thuy, T.V.: Hölder continuity for solutions to the complex Monge-Ampère equations in non-smooth pseudoconvex domains. Anal. Math Phys. https://doi.org/10.1007/s13324-017-0175-7 (2017)

  18. 18.

    Hong, N.X., Trao, N.V., Thuy, T.V.: Convergence in capacity of plurisubharmonic functions with given boundary values. Int. J. Math. 28(3), Article Id:1750018, 14p (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Khue, V.V., Hiep, P.H.: A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications. Trans. Am. Math. Soc. 361(10), 5539–5554 (2009)

    Article  MATH  Google Scholar 

  20. 20.

    Xing, Y.: Continuity of the complex Monge-Ampère operator. Proc. Am. Math. Soc. 124(2), 457–467 (1996)

    Article  MATH  Google Scholar 

  21. 21.

    Xing, Y.: Convergence in capacity. Ann. Inst. Fourier (Grenoble) 58(5), 1839–1861 (2008)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.06. We are grateful to an anonymous referee for his (her) comments that help to improve the exposition of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nguyen Xuan Hong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hai, L.M., Thuy, T.V. & Hong, N.X. A Note on Maximal Subextensions of Plurisubharmonic Functions. Acta Math Vietnam 43, 137–146 (2018). https://doi.org/10.1007/s40306-017-0234-z

Download citation

Keywords

  • Plurisubharmonic functions
  • Subextension of plurisubharmonic functions
  • Convergence in capacity

Mathematics Subject Classification (2010)

  • 32U05
  • 32U15
  • 32W20