Advertisement

Acta Mathematica Vietnamica

, Volume 43, Issue 1, pp 137–146 | Cite as

A Note on Maximal Subextensions of Plurisubharmonic Functions

  • Le Mau Hai
  • Tran Van Thuy
  • Nguyen Xuan Hong
Article

Abstract

In this paper, we consider subextensions of plurisubharmonic functions on bounded hyperconvex domains. Under some conditions, we prove the convergence in capacity of maximal subextensions with given boundary values.

Keywords

Plurisubharmonic functions Subextension of plurisubharmonic functions Convergence in capacity 

Mathematics Subject Classification (2010)

32U05 32U15 32W20 

Notes

Funding Information

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.06. We are grateful to an anonymous referee for his (her) comments that help to improve the exposition of the paper.

References

  1. 1.
    Åhag, P., Cegrell, U., CzyŻ, R., Hiep, P.H.: Monge-Ampè,re measures on pluripolar sets. J. Math. Pures Appl. 92, 613–627 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bedford, E., Taylor, B.A.: Smooth plurisubharmonic functions without subextension. Math. Z. 198(3), 331–337 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54(1), 159–179 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cegrell, U.: A general Dirichlet problem for the complex Monge-Ampère operator. Ann. Polon. Math. 94, 131–147 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cegrell, U.: Convergence in capacity. Canad. Math. Bull. 55(2), 242–248 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cegrell, U., Kołodziej, S., Zeriahi, A.: Maximal subextensions of plurisubharmonic functions. Ann. Fac. Sci. Toulouse Math. (6) 20, 101–122 (2011). Fascicule SpécialMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cegrell, U., Zeriahi, A.: Subextension of plurisubharmonic functions with bounded Monge-Ampère mass. C. R. Acad. Sci. Paris 336, 305–308 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    CzyŻ, R., Hed, L.: Subextension of plurisubharmonic functions without increasing the total Monge-Ampère mass. Ann. Polon. Math. 94(3), 275–281 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    El Mir, H.: Fonctions plurisousharmoniques et ensembles pluripolaires. Seminaire Lelong-Skoda, Lecture Notes in Math. vol. 822, pp. 61–76 Springer-Verlarg (1980)Google Scholar
  11. 11.
    Hiep, P.H.: Pluripolar sets and the subextension in Cegrell’s classes. Complex Var. Elliptic Equ. 53(7), 675–684 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hiep, P.H.: Convergence in capacity and applications. Math. Scand. 107, 90–102 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hong, N.X.: Monge-Ampère measures of maximal subextensions of plurisubharmonic functions with given boundary values. Complex Var. Elliptic Equ. 60(3), 429–435 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hong, N.X.: Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions. C. R. Acad. Sci. Paris, Ser. I(355), 487–492 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hong, N.X.: Range of the complex Monge-Ampère operator on plurifinely domain. Complex Var Elliptic Equ.  https://doi.org/10.1080/17476933.2017.1325476 (2017)
  16. 16.
    Hong, N.X., Hai, L.M., Viet, H.: Local maximality for bounded plurifinely plurisubharmonic functions. Potential Anal.  https://doi.org/10.1007/s11118-017-9630-1(2017)
  17. 17.
    Hong, N.X., Thuy, T.V.: Hölder continuity for solutions to the complex Monge-Ampère equations in non-smooth pseudoconvex domains. Anal. Math Phys.  https://doi.org/10.1007/s13324-017-0175-7 (2017)
  18. 18.
    Hong, N.X., Trao, N.V., Thuy, T.V.: Convergence in capacity of plurisubharmonic functions with given boundary values. Int. J. Math. 28(3), Article Id:1750018, 14p (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Khue, V.V., Hiep, P.H.: A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications. Trans. Am. Math. Soc. 361(10), 5539–5554 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Xing, Y.: Continuity of the complex Monge-Ampère operator. Proc. Am. Math. Soc. 124(2), 457–467 (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    Xing, Y.: Convergence in capacity. Ann. Inst. Fourier (Grenoble) 58(5), 1839–1861 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Le Mau Hai
    • 1
  • Tran Van Thuy
    • 1
  • Nguyen Xuan Hong
    • 1
  1. 1.Department of MathematicsHanoi National University of EducationHanoiVietnam

Personalised recommendations